text-generation-webui/modules/LLaMA_8bit.py
2023-03-04 13:28:42 -03:00

125 lines
3.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from repositories.llama_int8.llama import ModelArgs, Transformer, Tokenizer, LLaMA
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
torch.set_default_tensor_type(torch.HalfTensor)
print("Creating transformer")
model = Transformer(model_args)
print("Transformer created")
key_to_dim = {
"w1": 0,
"w2": -1,
"w3": 0,
"wo": -1,
"wq": 0,
"wk": 0,
"wv": 0,
"output": 0,
"tok_embeddings": -1,
"ffn_norm": None,
"attention_norm": None,
"norm": None,
"rope": None,
}
# ?
torch.set_default_tensor_type(torch.FloatTensor)
# load the state dict incrementally, to avoid memory problems
for i, ckpt in enumerate(checkpoints):
print(f"Loading checkpoint {i}")
checkpoint = torch.load(ckpt, map_location="cpu")
for parameter_name, parameter in model.named_parameters():
short_name = parameter_name.split(".")[-2]
if key_to_dim[short_name] is None and i == 0:
parameter.data = checkpoint[parameter_name]
elif key_to_dim[short_name] == 0:
size = checkpoint[parameter_name].size(0)
parameter.data[size * i : size * (i + 1), :] = checkpoint[
parameter_name
]
elif key_to_dim[short_name] == -1:
size = checkpoint[parameter_name].size(-1)
parameter.data[:, size * i : size * (i + 1)] = checkpoint[
parameter_name
]
del checkpoint
# model.load_state_dict(checkpoint, strict=False)
model.quantize()
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
class LLaMAModel_8bit:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
tokenizer_path = path / "tokenizer.model"
path = os.path.abspath(path)
tokenizer_path = os.path.abspath(tokenizer_path)
generator = load(path, tokenizer_path, max_seq_len, max_batch_size)
result = self()
result.pipeline = generator
return result
def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
results = self.pipeline.generate(
[prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
)
return results[0]