import requests import torch from PIL import Image from transformers import BlipForConditionalGeneration from transformers import BlipProcessor processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda") # raw_image = Image.open('/tmp/istockphoto-470604022-612x612.jpg').convert('RGB') def caption_image(raw_image): inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs, max_new_tokens=100) return processor.decode(out[0], skip_special_tokens=True)