SD Api Pics extension, v.1.1 (#596)

This commit is contained in:
Φφ 2023-04-08 03:36:04 +03:00 committed by GitHub
parent 5543a5089d
commit ffd102e5c0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 282 additions and 102 deletions

View file

@ -1,34 +1,78 @@
import base64
import io
import re
import time
from datetime import date
from pathlib import Path
import gradio as gr
import modules.shared as shared
import requests
import torch
from modules.models import reload_model, unload_model
from PIL import Image
from modules import chat, shared
torch._C._jit_set_profiling_mode(False)
# parameters which can be customized in settings.json of webui
params = {
'enable_SD_api': False,
'address': 'http://127.0.0.1:7860',
'mode': 0, # modes of operation: 0 (Manual only), 1 (Immersive/Interactive - looks for words to trigger), 2 (Picturebook Adventure - Always on)
'manage_VRAM': False,
'save_img': False,
'SD_model': 'NeverEndingDream', # not really used right now
'prompt_prefix': '(Masterpiece:1.1), (solo:1.3), detailed, intricate, colorful',
'SD_model': 'NeverEndingDream', # not used right now
'prompt_prefix': '(Masterpiece:1.1), detailed, intricate, colorful',
'negative_prompt': '(worst quality, low quality:1.3)',
'side_length': 512,
'restore_faces': False
'width': 512,
'height': 512,
'restore_faces': False,
'seed': -1,
'sampler_name': 'DDIM',
'steps': 32,
'cfg_scale': 7
}
def give_VRAM_priority(actor):
global shared, params
if actor == 'SD':
unload_model()
print("Requesting Auto1111 to re-load last checkpoint used...")
response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='')
response.raise_for_status()
elif actor == 'LLM':
print("Requesting Auto1111 to vacate VRAM...")
response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='')
response.raise_for_status()
reload_model()
elif actor == 'set':
print("VRAM mangement activated -- requesting Auto1111 to vacate VRAM...")
response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='')
response.raise_for_status()
elif actor == 'reset':
print("VRAM mangement deactivated -- requesting Auto1111 to reload checkpoint")
response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='')
response.raise_for_status()
else:
raise RuntimeError(f'Managing VRAM: "{actor}" is not a known state!')
response.raise_for_status()
del response
if params['manage_VRAM']:
give_VRAM_priority('set')
samplers = ['DDIM', 'DPM++ 2M Karras'] # TODO: get the availible samplers with http://{address}}/sdapi/v1/samplers
SD_models = ['NeverEndingDream'] # TODO: get with http://{address}}/sdapi/v1/sd-models and allow user to select
streaming_state = shared.args.no_stream # remember if chat streaming was enabled
picture_response = False # specifies if the next model response should appear as a picture
pic_id = 0
def remove_surrounded_chars(string):
@ -36,7 +80,13 @@ def remove_surrounded_chars(string):
# 'as few symbols as possible (0 upwards) between an asterisk and the end of the string'
return re.sub('\*[^\*]*?(\*|$)', '', string)
# I don't even need input_hijack for this as visible text will be commited to history as the unmodified string
def triggers_are_in(string):
string = remove_surrounded_chars(string)
# regex searches for send|main|message|me (at the end of the word) followed by
# a whole word of image|pic|picture|photo|snap|snapshot|selfie|meme(s),
# (?aims) are regex parser flags
return bool(re.search('(?aims)(send|mail|message|me)\\b.+?\\b(image|pic(ture)?|photo|snap(shot)?|selfie|meme)s?\\b', string))
def input_modifier(string):
@ -44,75 +94,80 @@ def input_modifier(string):
This function is applied to your text inputs before
they are fed into the model.
"""
global params, picture_response
if not params['enable_SD_api']:
global params
if not params['mode'] == 1: # if not in immersive/interactive mode, do nothing
return string
commands = ['send', 'mail', 'me']
mediums = ['image', 'pic', 'picture', 'photo']
subjects = ['yourself', 'own']
lowstr = string.lower()
# TODO: refactor out to separate handler and also replace detection with a regexp
if any(command in lowstr for command in commands) and any(case in lowstr for case in mediums): # trigger the generation if a command signature and a medium signature is found
picture_response = True
shared.args.no_stream = True # Disable streaming cause otherwise the SD-generated picture would return as a dud
shared.processing_message = "*Is sending a picture...*"
string = "Please provide a detailed description of your surroundings, how you look and the situation you're in and what you are doing right now"
if any(target in lowstr for target in subjects): # the focus of the image should be on the sending character
string = "Please provide a detailed and vivid description of how you look and what you are wearing"
if triggers_are_in(string): # if we're in it, check for trigger words
toggle_generation(True)
string = string.lower()
if "of" in string:
subject = string.split('of', 1)[1] # subdivide the string once by the first 'of' instance and get what's coming after it
string = "Please provide a detailed and vivid description of " + subject
else:
string = "Please provide a detailed description of your appearance, your surroundings and what you are doing right now"
return string
# Get and save the Stable Diffusion-generated picture
def get_SD_pictures(description):
global params, pic_id
global params
if params['manage_VRAM']:
give_VRAM_priority('SD')
payload = {
"prompt": params['prompt_prefix'] + description,
"seed": -1,
"sampler_name": "DPM++ 2M Karras",
"steps": 32,
"cfg_scale": 7,
"width": params['side_length'],
"height": params['side_length'],
"seed": params['seed'],
"sampler_name": params['sampler_name'],
"steps": params['steps'],
"cfg_scale": params['cfg_scale'],
"width": params['width'],
"height": params['height'],
"restore_faces": params['restore_faces'],
"negative_prompt": params['negative_prompt']
}
print(f'Prompting the image generator via the API on {params["address"]}...')
response = requests.post(url=f'{params["address"]}/sdapi/v1/txt2img', json=payload)
response.raise_for_status()
r = response.json()
visible_result = ""
for img_str in r['images']:
image = Image.open(io.BytesIO(base64.b64decode(img_str.split(",", 1)[0])))
if params['save_img']:
output_file = Path(f'extensions/sd_api_pictures/outputs/{pic_id:06d}.png')
variadic = f'{date.today().strftime("%Y_%m_%d")}/{shared.character}_{int(time.time())}'
output_file = Path(f'extensions/sd_api_pictures/outputs/{variadic}.png')
output_file.parent.mkdir(parents=True, exist_ok=True)
image.save(output_file.as_posix())
pic_id += 1
# lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history
image.thumbnail((300, 300))
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
buffered.seek(0)
image_bytes = buffered.getvalue()
img_str = "data:image/jpeg;base64," + base64.b64encode(image_bytes).decode()
visible_result = visible_result + f'<img src="{img_str}" alt="{description}">\n'
visible_result = visible_result + f'<img src="/file/extensions/sd_api_pictures/outputs/{variadic}.png" alt="{description}" style="max-width: unset; max-height: unset;">\n'
else:
# lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history
image.thumbnail((300, 300))
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
buffered.seek(0)
image_bytes = buffered.getvalue()
img_str = "data:image/jpeg;base64," + base64.b64encode(image_bytes).decode()
visible_result = visible_result + f'<img src="{img_str}" alt="{description}">\n'
if params['manage_VRAM']:
give_VRAM_priority('LLM')
return visible_result
# TODO: how do I make the UI history ignore the resulting pictures (I don't want HTML to appear in history)
# and replace it with 'text' for the purposes of logging?
def output_modifier(string):
"""
This function is applied to the model outputs.
"""
global pic_id, picture_response, streaming_state
global picture_response, params
if not picture_response:
return string
@ -125,17 +180,18 @@ def output_modifier(string):
if string == '':
string = 'no viable description in reply, try regenerating'
return string
# I can't for the love of all that's holy get the name from shared.gradio['name1'], so for now it will be like this
text = f'*Description: "{string}"*'
text = ""
if (params['mode'] < 2):
toggle_generation(False)
text = f'*Sends a picture which portrays: “{string}”*'
else:
text = string
image = get_SD_pictures(string)
string = get_SD_pictures(string) + "\n" + text
picture_response = False
shared.processing_message = "*Is typing...*"
shared.args.no_stream = streaming_state
return image + "\n" + text
return string
def bot_prefix_modifier(string):
@ -148,42 +204,91 @@ def bot_prefix_modifier(string):
return string
def force_pic():
global picture_response
picture_response = True
def toggle_generation(*args):
global picture_response, shared, streaming_state
if not args:
picture_response = not picture_response
else:
picture_response = args[0]
shared.args.no_stream = True if picture_response else streaming_state # Disable streaming cause otherwise the SD-generated picture would return as a dud
shared.processing_message = "*Is sending a picture...*" if picture_response else "*Is typing...*"
def filter_address(address):
address = address.strip()
# address = re.sub('http(s)?:\/\/|\/$','',address) # remove starting http:// OR https:// OR trailing slash
address = re.sub('\/$', '', address) # remove trailing /s
if not address.startswith('http'):
address = 'http://' + address
return address
def SD_api_address_update(address):
global params
msg = "✔️ SD API is found on:"
address = filter_address(address)
params.update({"address": address})
try:
response = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models')
response.raise_for_status()
# r = response.json()
except:
msg = "❌ No SD API endpoint on:"
return gr.Textbox.update(label=msg)
def ui():
# Gradio elements
with gr.Accordion("Stable Diffusion api integration", open=True):
# gr.Markdown('### Stable Diffusion API Pictures') # Currently the name of extension is shown as the title
with gr.Accordion("Parameters", open=True):
with gr.Row():
with gr.Column():
enable = gr.Checkbox(value=params['enable_SD_api'], label='Activate SD Api integration')
save_img = gr.Checkbox(value=params['save_img'], label='Keep original received images in the outputs subdir')
with gr.Column():
address = gr.Textbox(placeholder=params['address'], value=params['address'], label='Stable Diffusion host address')
address = gr.Textbox(placeholder=params['address'], value=params['address'], label='Auto1111\'s WebUI address')
mode = gr.Dropdown(["Manual", "Immersive/Interactive", "Picturebook/Adventure"], value="Manual", label="Mode of operation", type="index")
with gr.Column(scale=1, min_width=300):
manage_VRAM = gr.Checkbox(value=params['manage_VRAM'], label='Manage VRAM')
save_img = gr.Checkbox(value=params['save_img'], label='Keep original images and use them in chat')
with gr.Row():
force_btn = gr.Button("Force the next response to be a picture")
generate_now_btn = gr.Button("Generate an image response to the input")
force_pic = gr.Button("Force the picture response")
suppr_pic = gr.Button("Suppress the picture response")
with gr.Accordion("Generation parameters", open=False):
prompt_prefix = gr.Textbox(placeholder=params['prompt_prefix'], value=params['prompt_prefix'], label='Prompt Prefix (best used to describe the look of the character)')
with gr.Row():
negative_prompt = gr.Textbox(placeholder=params['negative_prompt'], value=params['negative_prompt'], label='Negative Prompt')
dimensions = gr.Slider(256, 702, value=params['side_length'], step=64, label='Image dimensions')
# model = gr.Dropdown(value=SD_models[0], choices=SD_models, label='Model')
with gr.Column():
negative_prompt = gr.Textbox(placeholder=params['negative_prompt'], value=params['negative_prompt'], label='Negative Prompt')
sampler_name = gr.Textbox(placeholder=params['sampler_name'], value=params['sampler_name'], label='Sampler')
with gr.Column():
width = gr.Slider(256, 768, value=params['width'], step=64, label='Width')
height = gr.Slider(256, 768, value=params['height'], step=64, label='Height')
with gr.Row():
steps = gr.Number(label="Steps:", value=params['steps'])
seed = gr.Number(label="Seed:", value=params['seed'])
cfg_scale = gr.Number(label="CFG Scale:", value=params['cfg_scale'])
# Event functions to update the parameters in the backend
enable.change(lambda x: params.update({"enable_SD_api": x}), enable, None)
address.change(lambda x: params.update({"address": filter_address(x)}), address, None)
mode.select(lambda x: params.update({"mode": x}), mode, None)
mode.select(lambda x: toggle_generation(x > 1), inputs=mode, outputs=None)
manage_VRAM.change(lambda x: params.update({"manage_VRAM": x}), manage_VRAM, None)
manage_VRAM.change(lambda x: give_VRAM_priority('set' if x else 'reset'), inputs=manage_VRAM, outputs=None)
save_img.change(lambda x: params.update({"save_img": x}), save_img, None)
address.change(lambda x: params.update({"address": x}), address, None)
address.submit(fn=SD_api_address_update, inputs=address, outputs=address)
prompt_prefix.change(lambda x: params.update({"prompt_prefix": x}), prompt_prefix, None)
negative_prompt.change(lambda x: params.update({"negative_prompt": x}), negative_prompt, None)
dimensions.change(lambda x: params.update({"side_length": x}), dimensions, None)
# model.change(lambda x: params.update({"SD_model": x}), model, None)
width.change(lambda x: params.update({"width": x}), width, None)
height.change(lambda x: params.update({"height": x}), height, None)
force_btn.click(force_pic)
generate_now_btn.click(force_pic)
generate_now_btn.click(chat.cai_chatbot_wrapper, shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream)
sampler_name.change(lambda x: params.update({"sampler_name": x}), sampler_name, None)
steps.change(lambda x: params.update({"steps": x}), steps, None)
seed.change(lambda x: params.update({"seed": x}), seed, None)
cfg_scale.change(lambda x: params.update({"cfg_scale": x}), cfg_scale, None)
force_pic.click(lambda x: toggle_generation(True), inputs=force_pic, outputs=None)
suppr_pic.click(lambda x: toggle_generation(False), inputs=suppr_pic, outputs=None)