added no_mmap & mlock parameters to llama.cpp and removed llamacpp_model_alternative (#1649)
--------- Co-authored-by: oobabooga <112222186+oobabooga@users.noreply.github.com>
This commit is contained in:
parent
2f1a2846d1
commit
fbcd32988e
5 changed files with 50 additions and 126 deletions
|
@ -220,8 +220,10 @@ Optionally, you can use the following command-line flags:
|
||||||
|
|
||||||
| Flag | Description |
|
| Flag | Description |
|
||||||
|-------------|-------------|
|
|-------------|-------------|
|
||||||
| `--threads` | Number of threads to use in llama.cpp. |
|
| `--threads` | Number of threads to use. |
|
||||||
| `--n_batch` | Processing batch size for llama.cpp. |
|
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. |
|
||||||
|
| `--no-mmap` | Prevent mmap from being used. |
|
||||||
|
| `--mlock` | Force the system to keep the model in RAM. |
|
||||||
|
|
||||||
#### GPTQ
|
#### GPTQ
|
||||||
|
|
||||||
|
|
|
@ -1,78 +1,63 @@
|
||||||
import multiprocessing
|
'''
|
||||||
|
Based on
|
||||||
|
https://github.com/abetlen/llama-cpp-python
|
||||||
|
|
||||||
import llamacpp
|
Documentation:
|
||||||
|
https://abetlen.github.io/llama-cpp-python/
|
||||||
|
'''
|
||||||
|
|
||||||
|
from llama_cpp import Llama, LlamaCache
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.callbacks import Iteratorize
|
from modules.callbacks import Iteratorize
|
||||||
|
|
||||||
|
|
||||||
class LlamaCppTokenizer:
|
|
||||||
"""A thin wrapper over the llamacpp tokenizer"""
|
|
||||||
def __init__(self, model: llamacpp.LlamaInference):
|
|
||||||
self._tokenizer = model.get_tokenizer()
|
|
||||||
self.eos_token_id = 2
|
|
||||||
self.bos_token_id = 0
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_model(cls, model: llamacpp.LlamaInference):
|
|
||||||
return cls(model)
|
|
||||||
|
|
||||||
def encode(self, prompt: str):
|
|
||||||
return self._tokenizer.tokenize(prompt)
|
|
||||||
|
|
||||||
def decode(self, ids):
|
|
||||||
return self._tokenizer.detokenize(ids)
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaCppModel:
|
class LlamaCppModel:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.initialized = False
|
self.initialized = False
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_pretrained(self, path):
|
def from_pretrained(self, path):
|
||||||
params = llamacpp.InferenceParams()
|
|
||||||
params.path_model = str(path)
|
|
||||||
params.n_threads = shared.args.threads or multiprocessing.cpu_count() // 2
|
|
||||||
|
|
||||||
_model = llamacpp.LlamaInference(params)
|
|
||||||
|
|
||||||
result = self()
|
result = self()
|
||||||
result.model = _model
|
|
||||||
result.params = params
|
|
||||||
|
|
||||||
tokenizer = LlamaCppTokenizer.from_model(_model)
|
params = {
|
||||||
return result, tokenizer
|
'model_path': str(path),
|
||||||
|
'n_ctx': 2048,
|
||||||
|
'seed': 0,
|
||||||
|
'n_threads': shared.args.threads or None,
|
||||||
|
'n_batch': shared.args.n_batch,
|
||||||
|
'use_mmap': not shared.args.no_mmap,
|
||||||
|
'use_mlock': shared.args.mlock
|
||||||
|
}
|
||||||
|
self.model = Llama(**params)
|
||||||
|
self.model.set_cache(LlamaCache)
|
||||||
|
|
||||||
|
# This is ugly, but the model and the tokenizer are the same object in this library.
|
||||||
|
return result, result
|
||||||
|
|
||||||
|
def encode(self, string):
|
||||||
|
if type(string) is str:
|
||||||
|
string = string.encode()
|
||||||
|
return self.model.tokenize(string)
|
||||||
|
|
||||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
||||||
params = self.params
|
if type(context) is str:
|
||||||
params.n_predict = token_count
|
context = context.encode()
|
||||||
params.top_p = top_p
|
tokens = self.model.tokenize(context)
|
||||||
params.top_k = top_k
|
|
||||||
params.temp = temperature
|
|
||||||
params.repeat_penalty = repetition_penalty
|
|
||||||
# params.repeat_last_n = repeat_last_n
|
|
||||||
|
|
||||||
# self.model.params = params
|
output = b""
|
||||||
self.model.add_bos()
|
count = 0
|
||||||
self.model.update_input(context)
|
for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty):
|
||||||
|
text = self.model.detokenize([token])
|
||||||
|
output += text
|
||||||
|
if callback:
|
||||||
|
callback(text.decode())
|
||||||
|
|
||||||
output = ""
|
count += 1
|
||||||
is_end_of_text = False
|
if count >= token_count or (token == self.model.token_eos()):
|
||||||
ctr = 0
|
break
|
||||||
while ctr < token_count and not is_end_of_text:
|
|
||||||
if self.model.has_unconsumed_input():
|
|
||||||
self.model.ingest_all_pending_input()
|
|
||||||
else:
|
|
||||||
self.model.eval()
|
|
||||||
token = self.model.sample()
|
|
||||||
text = self.model.token_to_str(token)
|
|
||||||
output += text
|
|
||||||
is_end_of_text = token == self.model.token_eos()
|
|
||||||
if callback:
|
|
||||||
callback(text)
|
|
||||||
ctr += 1
|
|
||||||
|
|
||||||
return output
|
return output.decode()
|
||||||
|
|
||||||
def generate_with_streaming(self, **kwargs):
|
def generate_with_streaming(self, **kwargs):
|
||||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||||
|
|
|
@ -1,65 +0,0 @@
|
||||||
'''
|
|
||||||
Based on
|
|
||||||
https://github.com/abetlen/llama-cpp-python
|
|
||||||
|
|
||||||
Documentation:
|
|
||||||
https://abetlen.github.io/llama-cpp-python/
|
|
||||||
'''
|
|
||||||
|
|
||||||
from llama_cpp import Llama, LlamaCache
|
|
||||||
|
|
||||||
from modules import shared
|
|
||||||
from modules.callbacks import Iteratorize
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaCppModel:
|
|
||||||
def __init__(self):
|
|
||||||
self.initialized = False
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_pretrained(self, path):
|
|
||||||
result = self()
|
|
||||||
|
|
||||||
params = {
|
|
||||||
'model_path': str(path),
|
|
||||||
'n_ctx': 2048,
|
|
||||||
'seed': 0,
|
|
||||||
'n_threads': shared.args.threads or None,
|
|
||||||
'n_batch': shared.args.n_batch
|
|
||||||
}
|
|
||||||
self.model = Llama(**params)
|
|
||||||
self.model.set_cache(LlamaCache)
|
|
||||||
|
|
||||||
# This is ugly, but the model and the tokenizer are the same object in this library.
|
|
||||||
return result, result
|
|
||||||
|
|
||||||
def encode(self, string):
|
|
||||||
if type(string) is str:
|
|
||||||
string = string.encode()
|
|
||||||
return self.model.tokenize(string)
|
|
||||||
|
|
||||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
|
||||||
if type(context) is str:
|
|
||||||
context = context.encode()
|
|
||||||
tokens = self.model.tokenize(context)
|
|
||||||
|
|
||||||
output = b""
|
|
||||||
count = 0
|
|
||||||
for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty):
|
|
||||||
text = self.model.detokenize([token])
|
|
||||||
output += text
|
|
||||||
if callback:
|
|
||||||
callback(text.decode())
|
|
||||||
|
|
||||||
count += 1
|
|
||||||
if count >= token_count or (token == self.model.token_eos()):
|
|
||||||
break
|
|
||||||
|
|
||||||
return output.decode()
|
|
||||||
|
|
||||||
def generate_with_streaming(self, **kwargs):
|
|
||||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
|
||||||
reply = ''
|
|
||||||
for token in generator:
|
|
||||||
reply += token
|
|
||||||
yield reply
|
|
|
@ -129,7 +129,7 @@ def load_model(model_name):
|
||||||
|
|
||||||
# llamacpp model
|
# llamacpp model
|
||||||
elif shared.model_type == 'llamacpp':
|
elif shared.model_type == 'llamacpp':
|
||||||
from modules.llamacpp_model_alternative import LlamaCppModel
|
from modules.llamacpp_model import LlamaCppModel
|
||||||
|
|
||||||
path = Path(f'{shared.args.model_dir}/{model_name}')
|
path = Path(f'{shared.args.model_dir}/{model_name}')
|
||||||
if path.is_file():
|
if path.is_file():
|
||||||
|
|
|
@ -120,8 +120,10 @@ parser.add_argument('--sdp-attention', action='store_true', help="Use torch 2.0'
|
||||||
parser.add_argument('--trust-remote-code', action='store_true', help="Set trust_remote_code=True while loading a model. Necessary for ChatGLM.")
|
parser.add_argument('--trust-remote-code', action='store_true', help="Set trust_remote_code=True while loading a model. Necessary for ChatGLM.")
|
||||||
|
|
||||||
# llama.cpp
|
# llama.cpp
|
||||||
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use in llama.cpp.')
|
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
||||||
parser.add_argument('--n_batch', type=int, default=8, help='Processing batch size for llama.cpp.')
|
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
||||||
|
parser.add_argument('--no_mmap', action='store_true', help='Prevent mmap from being used.')
|
||||||
|
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
||||||
|
|
||||||
# GPTQ
|
# GPTQ
|
||||||
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue