Add superbooga time weighted history retrieval (#2080)
This commit is contained in:
parent
a04266161d
commit
ee674afa50
2 changed files with 49 additions and 21 deletions
|
@ -47,34 +47,58 @@ class ChromaCollector(Collecter):
|
|||
self.ids = [f"id{i}" for i in range(len(texts))]
|
||||
self.collection.add(documents=texts, ids=self.ids)
|
||||
|
||||
def get_documents_and_ids(self, search_strings: list[str], n_results: int):
|
||||
def get_documents_ids_distances(self, search_strings: list[str], n_results: int):
|
||||
n_results = min(len(self.ids), n_results)
|
||||
if n_results == 0:
|
||||
return [], []
|
||||
|
||||
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents'])
|
||||
result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents', 'distances'])
|
||||
documents = result['documents'][0]
|
||||
ids = list(map(lambda x: int(x[2:]), result['ids'][0]))
|
||||
return documents, ids
|
||||
distances = result['distances'][0]
|
||||
return documents, ids, distances
|
||||
|
||||
# Get chunks by similarity
|
||||
def get(self, search_strings: list[str], n_results: int) -> list[str]:
|
||||
documents, _ = self.get_documents_and_ids(search_strings, n_results)
|
||||
documents, _, _ = self.get_documents_ids_distances(search_strings, n_results)
|
||||
return documents
|
||||
|
||||
# Get ids by similarity
|
||||
def get_ids(self, search_strings: list[str], n_results: int) -> list[str]:
|
||||
_, ids = self.get_documents_and_ids(search_strings, n_results)
|
||||
_, ids, _ = self.get_documents_ids_distances(search_strings, n_results)
|
||||
return ids
|
||||
|
||||
# Get chunks by similarity and then sort by insertion order
|
||||
def get_sorted(self, search_strings: list[str], n_results: int) -> list[str]:
|
||||
documents, ids = self.get_documents_and_ids(search_strings, n_results)
|
||||
documents, ids, _ = self.get_documents_ids_distances(search_strings, n_results)
|
||||
return [x for _, x in sorted(zip(ids, documents))]
|
||||
|
||||
# Multiply distance by factor within [0, time_weight] where more recent is lower
|
||||
def apply_time_weight_to_distances(self, ids: list[int], distances: list[float], time_weight: float = 1.0) -> list[float]:
|
||||
if len(self.ids) <= 1:
|
||||
return distances.copy()
|
||||
|
||||
return [distance * (1 - _id / (len(self.ids) - 1) * time_weight) for _id, distance in zip(ids, distances)]
|
||||
|
||||
# Get ids by similarity and then sort by insertion order
|
||||
def get_ids_sorted(self, search_strings: list[str], n_results: int) -> list[str]:
|
||||
_, ids = self.get_documents_and_ids(search_strings, n_results)
|
||||
def get_ids_sorted(self, search_strings: list[str], n_results: int, n_initial: int = None, time_weight: float = 1.0) -> list[str]:
|
||||
do_time_weight = time_weight > 0
|
||||
if not (do_time_weight and n_initial is not None):
|
||||
n_initial = n_results
|
||||
elif n_initial == -1:
|
||||
n_initial = len(self.ids)
|
||||
|
||||
if n_initial < n_results:
|
||||
raise ValueError(f"n_initial {n_initial} should be >= n_results {n_results}")
|
||||
|
||||
_, ids, distances = self.get_documents_ids_distances(search_strings, n_initial)
|
||||
if do_time_weight:
|
||||
distances_w = self.apply_time_weight_to_distances(ids, distances, time_weight=time_weight)
|
||||
results = zip(ids, distances, distances_w)
|
||||
results = sorted(results, key=lambda x: x[2])[:n_results]
|
||||
results = sorted(results, key=lambda x: x[0])
|
||||
ids = [x[0] for x in results]
|
||||
|
||||
return sorted(ids)
|
||||
|
||||
def clear(self):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue