Make the code more like PEP8 for readability (#862)

This commit is contained in:
oobabooga 2023-04-07 00:15:45 -03:00 committed by GitHub
parent 848c4edfd5
commit ea6e77df72
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
28 changed files with 302 additions and 165 deletions

View file

@ -16,11 +16,12 @@ from modules.models import local_rank
def get_max_prompt_length(tokens):
max_length = 2048-tokens
max_length = 2048 - tokens
if shared.soft_prompt:
max_length -= shared.soft_prompt_tensor.shape[1]
return max_length
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
if any((shared.is_RWKV, shared.is_llamacpp)):
input_ids = shared.tokenizer.encode(str(prompt))
@ -30,7 +31,7 @@ def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
if type(shared.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
input_ids = input_ids[:,1:]
input_ids = input_ids[:, 1:]
if shared.args.cpu:
return input_ids
@ -44,6 +45,7 @@ def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
else:
return input_ids.cuda()
def decode(output_ids):
# Open Assistant relies on special tokens like <|endoftext|>
if re.match('.*(oasst|galactica)-*', shared.model_name.lower()):
@ -53,14 +55,17 @@ def decode(output_ids):
reply = reply.replace(r'<|endoftext|>', '')
return reply
def generate_softprompt_input_tensors(input_ids):
inputs_embeds = shared.model.transformer.wte(input_ids)
inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1)
filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device)
#filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
# filler_input_ids += shared.model.config.bos_token_id # setting dummy input_ids to bos tokens
return inputs_embeds, filler_input_ids
# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
for i in range(10):
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
@ -69,6 +74,8 @@ def fix_gpt4chan(s):
return s
# Fix the LaTeX equations in galactica
def fix_galactica(s):
s = s.replace(r'\[', r'$')
s = s.replace(r'\]', r'$')
@ -79,6 +86,7 @@ def fix_galactica(s):
s = re.sub(r"\n{3,}", "\n\n", s)
return s
def formatted_outputs(reply, model_name):
if not shared.is_chat():
if 'galactica' in model_name.lower():
@ -92,20 +100,24 @@ def formatted_outputs(reply, model_name):
else:
return reply
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
torch.cuda.empty_cache()
def set_manual_seed(seed):
if seed != -1:
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def stop_everything_event():
shared.stop_everything = True
def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]):
clear_torch_cache()
set_manual_seed(generate_state['seed'])
@ -128,7 +140,7 @@ def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]
try:
if shared.args.no_stream:
reply = shared.model.generate(context=question, **generate_params)
output = original_question+reply
output = original_question + reply
if not shared.is_chat():
reply = original_question + apply_extensions(reply, "output")
yield formatted_outputs(reply, shared.model_name)
@ -139,7 +151,7 @@ def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]
# RWKV has proper streaming, which is very nice.
# No need to generate 8 tokens at a time.
for reply in shared.model.generate_with_streaming(context=question, **generate_params):
output = original_question+reply
output = original_question + reply
if not shared.is_chat():
reply = original_question + apply_extensions(reply, "output")
yield formatted_outputs(reply, shared.model_name)
@ -240,7 +252,7 @@ def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
else:
for i in range(generate_state['max_new_tokens']//8+1):
for i in range(generate_state['max_new_tokens'] // 8 + 1):
clear_torch_cache()
with torch.no_grad():
output = shared.model.generate(**generate_params)[0]
@ -271,6 +283,6 @@ def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]
finally:
t1 = time.time()
original_tokens = len(original_input_ids[0])
new_tokens = len(output)-original_tokens
new_tokens = len(output) - original_tokens
print(f"Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})")
return