lint
This commit is contained in:
parent
9b55d3a9f9
commit
e202190c4f
24 changed files with 146 additions and 125 deletions
|
@ -36,12 +36,12 @@ class LogprobProcessor(LogitsProcessor):
|
|||
super().__init__()
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
|
||||
if self.logprobs is not None: # 0-5
|
||||
if self.logprobs is not None: # 0-5
|
||||
log_e_probabilities = F.log_softmax(logits, dim=1)
|
||||
# XXX hack. should find the selected token and include the prob of that
|
||||
# ... but we just +1 here instead because we don't know it yet.
|
||||
top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs + 1)
|
||||
top_tokens = [ decode(tok) for tok in top_indices[0] ]
|
||||
top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs + 1)
|
||||
top_tokens = [decode(tok) for tok in top_indices[0]]
|
||||
self.token_alternatives = dict(zip(top_tokens, top_values[0].tolist()))
|
||||
return logits
|
||||
|
||||
|
@ -50,9 +50,9 @@ def convert_logprobs_to_tiktoken(model, logprobs):
|
|||
try:
|
||||
encoder = tiktoken.encoding_for_model(model)
|
||||
# just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall.
|
||||
return dict([ (encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items() ])
|
||||
return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()])
|
||||
except KeyError:
|
||||
# assume native tokens if we can't find the tokenizer
|
||||
# assume native tokens if we can't find the tokenizer
|
||||
return logprobs
|
||||
|
||||
|
||||
|
@ -71,9 +71,9 @@ def marshal_common_params(body):
|
|||
# OpenAI API Parameters
|
||||
# model - ignored for now, TODO: When we can reliably load a model or lora from a name only change this
|
||||
req_params['requested_model'] = body.get('model', shared.model_name)
|
||||
|
||||
|
||||
req_params['suffix'] = default(body, 'suffix', req_params['suffix'])
|
||||
req_params['temperature'] = clamp(default(body, 'temperature', req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0/2.0
|
||||
req_params['temperature'] = clamp(default(body, 'temperature', req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0/2.0
|
||||
req_params['top_p'] = clamp(default(body, 'top_p', req_params['top_p']), 0.001, 1.0)
|
||||
n = default(body, 'n', 1)
|
||||
if n != 1:
|
||||
|
@ -81,7 +81,7 @@ def marshal_common_params(body):
|
|||
|
||||
if 'stop' in body: # str or array, max len 4 (ignored)
|
||||
if isinstance(body['stop'], str):
|
||||
req_params['stopping_strings'] = [body['stop']] # non-standard parameter
|
||||
req_params['stopping_strings'] = [body['stop']] # non-standard parameter
|
||||
elif isinstance(body['stop'], list):
|
||||
req_params['stopping_strings'] = body['stop']
|
||||
|
||||
|
@ -91,7 +91,7 @@ def marshal_common_params(body):
|
|||
|
||||
logits_processor = []
|
||||
logit_bias = body.get('logit_bias', None)
|
||||
if logit_bias: # {str: float, ...}
|
||||
if logit_bias: # {str: float, ...}
|
||||
# XXX convert tokens from tiktoken based on requested model
|
||||
# Ex.: 'logit_bias': {'1129': 100, '11442': 100, '16243': 100}
|
||||
try:
|
||||
|
@ -103,19 +103,19 @@ def marshal_common_params(body):
|
|||
print(logit_bias, '->', new_logit_bias)
|
||||
logit_bias = new_logit_bias
|
||||
except KeyError:
|
||||
pass # assume native tokens if we can't find the tokenizer
|
||||
pass # assume native tokens if we can't find the tokenizer
|
||||
|
||||
logits_processor = [LogitsBiasProcessor(logit_bias)]
|
||||
|
||||
logprobs = None # coming to chat eventually
|
||||
logprobs = None # coming to chat eventually
|
||||
if 'logprobs' in body:
|
||||
logprobs = default(body, 'logprobs', 0) # maybe cap at topk? don't clamp 0-5.
|
||||
logprobs = default(body, 'logprobs', 0) # maybe cap at topk? don't clamp 0-5.
|
||||
req_params['logprob_proc'] = LogprobProcessor(logprobs)
|
||||
logits_processor.extend([req_params['logprob_proc']])
|
||||
else:
|
||||
logprobs = None
|
||||
|
||||
if logits_processor: # requires logits_processor support
|
||||
if logits_processor: # requires logits_processor support
|
||||
req_params['logits_processor'] = LogitsProcessorList(logits_processor)
|
||||
|
||||
return req_params
|
||||
|
@ -123,14 +123,14 @@ def marshal_common_params(body):
|
|||
|
||||
def messages_to_prompt(body: dict, req_params: dict, max_tokens):
|
||||
# functions
|
||||
if body.get('functions', []): # chat only
|
||||
if body.get('functions', []): # chat only
|
||||
raise InvalidRequestError(message="functions is not supported.", param='functions')
|
||||
if body.get('function_call', ''): # chat only, 'none', 'auto', {'name': 'func'}
|
||||
if body.get('function_call', ''): # chat only, 'none', 'auto', {'name': 'func'}
|
||||
raise InvalidRequestError(message="function_call is not supported.", param='function_call')
|
||||
|
||||
if not 'messages' in body:
|
||||
raise InvalidRequestError(message="messages is required", param='messages')
|
||||
|
||||
|
||||
messages = body['messages']
|
||||
|
||||
role_formats = {
|
||||
|
@ -152,11 +152,11 @@ def messages_to_prompt(body: dict, req_params: dict, max_tokens):
|
|||
template = instruct['turn_template']
|
||||
system_message_template = "{message}"
|
||||
system_message_default = instruct['context']
|
||||
bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token
|
||||
bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token
|
||||
user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct['user'])
|
||||
bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct['bot'])
|
||||
bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ')
|
||||
|
||||
|
||||
role_formats = {
|
||||
'user': user_message_template,
|
||||
'assistant': bot_message_template,
|
||||
|
@ -167,7 +167,7 @@ def messages_to_prompt(body: dict, req_params: dict, max_tokens):
|
|||
|
||||
if 'Alpaca' in shared.settings['instruction_template']:
|
||||
req_params['stopping_strings'].extend(['\n###'])
|
||||
elif instruct['user']: # WizardLM and some others have no user prompt.
|
||||
elif instruct['user']: # WizardLM and some others have no user prompt.
|
||||
req_params['stopping_strings'].extend(['\n' + instruct['user'], instruct['user']])
|
||||
|
||||
debug_msg(f"Loaded instruction role format: {shared.settings['instruction_template']}")
|
||||
|
@ -220,16 +220,16 @@ def messages_to_prompt(body: dict, req_params: dict, max_tokens):
|
|||
if max_tokens > 0 and token_count + max_tokens > req_params['truncation_length']:
|
||||
err_msg = f"This model maximum context length is {req_params['truncation_length']} tokens. However, your messages resulted in over {token_count} tokens and max_tokens is {max_tokens}."
|
||||
print(f"Warning: ${err_msg}")
|
||||
#raise InvalidRequestError(message=err_msg)
|
||||
# raise InvalidRequestError(message=err_msg)
|
||||
|
||||
return prompt, token_count
|
||||
|
||||
|
||||
def chat_completions(body: dict, is_legacy: bool=False) -> dict:
|
||||
def chat_completions(body: dict, is_legacy: bool = False) -> dict:
|
||||
# Chat Completions
|
||||
object_type = 'chat.completions'
|
||||
created_time = int(time.time())
|
||||
cmpl_id = "chatcmpl-%d" % (int(time.time()*1000000000))
|
||||
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
|
||||
resp_list = 'data' if is_legacy else 'choices'
|
||||
|
||||
# common params
|
||||
|
@ -237,7 +237,7 @@ def chat_completions(body: dict, is_legacy: bool=False) -> dict:
|
|||
req_params['stream'] = False
|
||||
requested_model = req_params.pop('requested_model')
|
||||
logprob_proc = req_params.pop('logprob_proc', None)
|
||||
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.
|
||||
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.
|
||||
|
||||
# chat default max_tokens is 'inf', but also flexible
|
||||
max_tokens = 0
|
||||
|
@ -254,7 +254,7 @@ def chat_completions(body: dict, is_legacy: bool=False) -> dict:
|
|||
# generate reply #######################################
|
||||
debug_msg({'prompt': prompt, 'req_params': req_params})
|
||||
stopping_strings = req_params.pop('stopping_strings', [])
|
||||
logprob_proc = req_params.pop('logprob_proc', None)
|
||||
logprob_proc = req_params.pop('logprob_proc', None)
|
||||
generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False)
|
||||
|
||||
answer = ''
|
||||
|
@ -286,9 +286,9 @@ def chat_completions(body: dict, is_legacy: bool=False) -> dict:
|
|||
"total_tokens": token_count + completion_token_count
|
||||
}
|
||||
}
|
||||
if logprob_proc: # not official for chat yet
|
||||
if logprob_proc: # not official for chat yet
|
||||
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
|
||||
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
# else:
|
||||
# resp[resp_list][0]["logprobs"] = None
|
||||
|
||||
|
@ -296,12 +296,12 @@ def chat_completions(body: dict, is_legacy: bool=False) -> dict:
|
|||
|
||||
|
||||
# generator
|
||||
def stream_chat_completions(body: dict, is_legacy: bool=False):
|
||||
def stream_chat_completions(body: dict, is_legacy: bool = False):
|
||||
|
||||
# Chat Completions
|
||||
stream_object_type = 'chat.completions.chunk'
|
||||
created_time = int(time.time())
|
||||
cmpl_id = "chatcmpl-%d" % (int(time.time()*1000000000))
|
||||
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
|
||||
resp_list = 'data' if is_legacy else 'choices'
|
||||
|
||||
# common params
|
||||
|
@ -309,7 +309,7 @@ def stream_chat_completions(body: dict, is_legacy: bool=False):
|
|||
req_params['stream'] = True
|
||||
requested_model = req_params.pop('requested_model')
|
||||
logprob_proc = req_params.pop('logprob_proc', None)
|
||||
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.
|
||||
req_params['top_k'] = 20 # There is no best_of/top_k param for chat, but it is much improved with a higher top_k.
|
||||
|
||||
# chat default max_tokens is 'inf', but also flexible
|
||||
max_tokens = 0
|
||||
|
@ -339,10 +339,10 @@ def stream_chat_completions(body: dict, is_legacy: bool=False):
|
|||
}],
|
||||
}
|
||||
|
||||
if logprob_proc: # not official for chat yet
|
||||
if logprob_proc: # not official for chat yet
|
||||
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
|
||||
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
#else:
|
||||
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
# else:
|
||||
# chunk[resp_list][0]["logprobs"] = None
|
||||
return chunk
|
||||
|
||||
|
@ -350,7 +350,7 @@ def stream_chat_completions(body: dict, is_legacy: bool=False):
|
|||
|
||||
# generate reply #######################################
|
||||
debug_msg({'prompt': prompt, 'req_params': req_params})
|
||||
|
||||
|
||||
stopping_strings = req_params.pop('stopping_strings', [])
|
||||
logprob_proc = req_params.pop('logprob_proc', None)
|
||||
|
||||
|
@ -377,9 +377,8 @@ def stream_chat_completions(body: dict, is_legacy: bool=False):
|
|||
|
||||
completion_token_count += len(encode(new_content)[0])
|
||||
chunk = chat_streaming_chunk(new_content)
|
||||
|
||||
yield chunk
|
||||
|
||||
yield chunk
|
||||
|
||||
stop_reason = "stop"
|
||||
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
|
||||
|
@ -396,12 +395,12 @@ def stream_chat_completions(body: dict, is_legacy: bool=False):
|
|||
yield chunk
|
||||
|
||||
|
||||
def completions(body: dict, is_legacy: bool=False):
|
||||
def completions(body: dict, is_legacy: bool = False):
|
||||
# Legacy
|
||||
# Text Completions
|
||||
object_type = 'text_completion'
|
||||
created_time = int(time.time())
|
||||
cmpl_id = "conv-%d" % (int(time.time()*1000000000))
|
||||
cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
|
||||
resp_list = 'data' if is_legacy else 'choices'
|
||||
|
||||
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
|
||||
|
@ -433,7 +432,7 @@ def completions(body: dict, is_legacy: bool=False):
|
|||
|
||||
if token_count + max_tokens > req_params['truncation_length']:
|
||||
err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})."
|
||||
#print(f"Warning: ${err_msg}")
|
||||
# print(f"Warning: ${err_msg}")
|
||||
raise InvalidRequestError(message=err_msg, param=max_tokens_str)
|
||||
|
||||
req_params['echo'] = default(body, 'echo', req_params['echo'])
|
||||
|
@ -478,21 +477,21 @@ def completions(body: dict, is_legacy: bool=False):
|
|||
|
||||
if logprob_proc:
|
||||
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
|
||||
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
else:
|
||||
resp[resp_list][0]["logprobs"] = None
|
||||
resp[resp_list][0]["logprobs"] = None
|
||||
|
||||
return resp
|
||||
|
||||
|
||||
# generator
|
||||
def stream_completions(body: dict, is_legacy: bool=False):
|
||||
def stream_completions(body: dict, is_legacy: bool = False):
|
||||
# Legacy
|
||||
# Text Completions
|
||||
#object_type = 'text_completion'
|
||||
# object_type = 'text_completion'
|
||||
stream_object_type = 'text_completion.chunk'
|
||||
created_time = int(time.time())
|
||||
cmpl_id = "conv-%d" % (int(time.time()*1000000000))
|
||||
cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
|
||||
resp_list = 'data' if is_legacy else 'choices'
|
||||
|
||||
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
|
||||
|
@ -524,7 +523,7 @@ def stream_completions(body: dict, is_legacy: bool=False):
|
|||
|
||||
if token_count + max_tokens > req_params['truncation_length']:
|
||||
err_msg = f"The token count of your prompt ({token_count}) plus max_tokens ({max_tokens}) cannot exceed the model's context length ({req_params['truncation_length']})."
|
||||
#print(f"Warning: ${err_msg}")
|
||||
# print(f"Warning: ${err_msg}")
|
||||
raise InvalidRequestError(message=err_msg, param=max_tokens_str)
|
||||
|
||||
req_params['echo'] = default(body, 'echo', req_params['echo'])
|
||||
|
@ -545,9 +544,9 @@ def stream_completions(body: dict, is_legacy: bool=False):
|
|||
}
|
||||
if logprob_proc:
|
||||
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
|
||||
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
|
||||
else:
|
||||
chunk[resp_list][0]["logprobs"] = None
|
||||
chunk[resp_list][0]["logprobs"] = None
|
||||
|
||||
return chunk
|
||||
|
||||
|
@ -583,7 +582,6 @@ def stream_completions(body: dict, is_legacy: bool=False):
|
|||
completion_token_count += len(encode(new_content)[0])
|
||||
yield chunk
|
||||
|
||||
|
||||
stop_reason = "stop"
|
||||
if token_count + completion_token_count >= req_params['truncation_length'] or completion_token_count >= max_tokens:
|
||||
stop_reason = "length"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue