Prevent unwanted log messages from modules
This commit is contained in:
parent
fb91406e93
commit
e116d31180
20 changed files with 120 additions and 111 deletions
|
@ -1,8 +1,8 @@
|
|||
import logging
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from modules.logging_colors import logger
|
||||
|
||||
|
||||
def ui():
|
||||
gr.Markdown("### This extension is deprecated, use \"multimodal\" extension instead")
|
||||
logging.error("LLaVA extension is deprecated, use \"multimodal\" extension instead")
|
||||
logger.error("LLaVA extension is deprecated, use \"multimodal\" extension instead")
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import base64
|
||||
import logging
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from io import BytesIO
|
||||
|
@ -10,6 +9,7 @@ from PIL import Image
|
|||
|
||||
from extensions.multimodal.pipeline_loader import load_pipeline
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
from modules.text_generation import encode, get_max_prompt_length
|
||||
|
||||
|
||||
|
@ -26,7 +26,7 @@ class MultimodalEmbedder:
|
|||
def __init__(self, params: dict):
|
||||
pipeline, source = load_pipeline(params)
|
||||
self.pipeline = pipeline
|
||||
logging.info(f'Multimodal: loaded pipeline {self.pipeline.name()} from pipelines/{source} ({self.pipeline.__class__.__name__})')
|
||||
logger.info(f'Multimodal: loaded pipeline {self.pipeline.name()} from pipelines/{source} ({self.pipeline.__class__.__name__})')
|
||||
|
||||
def _split_prompt(self, prompt: str, load_images: bool = False) -> List[PromptPart]:
|
||||
"""Splits a prompt into a list of `PromptParts` to separate image data from text.
|
||||
|
@ -138,7 +138,7 @@ class MultimodalEmbedder:
|
|||
|
||||
# notify user if we truncated an image
|
||||
if removed_images > 0:
|
||||
logging.warning(f"Multimodal: removed {removed_images} image(s) from prompt. Try decreasing max_new_tokens if generation is broken")
|
||||
logger.warning(f"Multimodal: removed {removed_images} image(s) from prompt. Try decreasing max_new_tokens if generation is broken")
|
||||
|
||||
return encoded
|
||||
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import logging
|
||||
import traceback
|
||||
from importlib import import_module
|
||||
from pathlib import Path
|
||||
|
@ -6,6 +5,7 @@ from typing import Tuple
|
|||
|
||||
from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
|
||||
|
||||
def _get_available_pipeline_modules():
|
||||
|
@ -21,8 +21,8 @@ def load_pipeline(params: dict) -> Tuple[AbstractMultimodalPipeline, str]:
|
|||
try:
|
||||
pipeline_modules[name] = import_module(f'extensions.multimodal.pipelines.{name}.pipelines')
|
||||
except:
|
||||
logging.warning(f'Failed to get multimodal pipelines from {name}')
|
||||
logging.warning(traceback.format_exc())
|
||||
logger.warning(f'Failed to get multimodal pipelines from {name}')
|
||||
logger.warning(traceback.format_exc())
|
||||
|
||||
if shared.args.multimodal_pipeline is not None:
|
||||
for k in pipeline_modules:
|
||||
|
@ -48,5 +48,5 @@ def load_pipeline(params: dict) -> Tuple[AbstractMultimodalPipeline, str]:
|
|||
log = f'Multimodal - ERROR: Failed to load multimodal pipeline "{shared.args.multimodal_pipeline}", available pipelines are: {available}.'
|
||||
else:
|
||||
log = f'Multimodal - ERROR: Failed to determine multimodal pipeline for model {shared.args.model}, please select one manually using --multimodal-pipeline [PIPELINE]. Available pipelines are: {available}.'
|
||||
logging.critical(f'{log} Please specify a correct pipeline, or disable the extension')
|
||||
logger.critical(f'{log} Please specify a correct pipeline, or disable the extension')
|
||||
raise RuntimeError(f'{log} Please specify a correct pipeline, or disable the extension')
|
||||
|
|
|
@ -1,16 +1,17 @@
|
|||
import logging
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline
|
||||
from huggingface_hub import hf_hub_download
|
||||
from modules import shared
|
||||
from modules.text_generation import encode
|
||||
from PIL import Image
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModel
|
||||
|
||||
from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
from modules.text_generation import encode
|
||||
|
||||
|
||||
class LLaVA_v0_Pipeline(AbstractMultimodalPipeline):
|
||||
CLIP_REPO = "openai/clip-vit-large-patch14"
|
||||
|
@ -26,11 +27,11 @@ class LLaVA_v0_Pipeline(AbstractMultimodalPipeline):
|
|||
def _load_models(self):
|
||||
start_ts = time.time()
|
||||
|
||||
logging.info(f"LLaVA - Loading CLIP from {LLaVA_v0_Pipeline.CLIP_REPO} as {self.clip_dtype} on {self.clip_device}...")
|
||||
logger.info(f"LLaVA - Loading CLIP from {LLaVA_v0_Pipeline.CLIP_REPO} as {self.clip_dtype} on {self.clip_device}...")
|
||||
image_processor = CLIPImageProcessor.from_pretrained(LLaVA_v0_Pipeline.CLIP_REPO, torch_dtype=self.clip_dtype)
|
||||
vision_tower = CLIPVisionModel.from_pretrained(LLaVA_v0_Pipeline.CLIP_REPO, torch_dtype=self.clip_dtype).to(self.clip_device)
|
||||
|
||||
logging.info(f"LLaVA - Loading projector from {self.llava_projector_repo()} as {self.projector_dtype} on {self.projector_device}...")
|
||||
logger.info(f"LLaVA - Loading projector from {self.llava_projector_repo()} as {self.projector_dtype} on {self.projector_device}...")
|
||||
projector_path = hf_hub_download(self.llava_projector_repo(), self.llava_projector_filename())
|
||||
mm_projector = torch.nn.Linear(*self.llava_projector_shape())
|
||||
projector_data = torch.load(projector_path)
|
||||
|
@ -38,7 +39,7 @@ class LLaVA_v0_Pipeline(AbstractMultimodalPipeline):
|
|||
mm_projector.bias = torch.nn.Parameter(projector_data['model.mm_projector.bias'].to(dtype=self.projector_dtype), False)
|
||||
mm_projector = mm_projector.to(self.projector_device)
|
||||
|
||||
logging.info(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds")
|
||||
logger.info(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds")
|
||||
return image_processor, vision_tower, mm_projector
|
||||
|
||||
@staticmethod
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import base64
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from functools import partial
|
||||
|
@ -10,6 +9,7 @@ import torch
|
|||
|
||||
from extensions.multimodal.multimodal_embedder import MultimodalEmbedder
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
|
||||
params = {
|
||||
"add_all_images_to_prompt": False,
|
||||
|
@ -78,7 +78,7 @@ def tokenizer_modifier(state, prompt, input_ids, input_embeds):
|
|||
return prompt, input_ids, input_embeds
|
||||
|
||||
prompt, input_ids, input_embeds, total_embedded = multimodal_embedder.forward(prompt, state, params)
|
||||
logging.info(f'Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s')
|
||||
logger.info(f'Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s')
|
||||
return (prompt,
|
||||
input_ids.unsqueeze(0).to(shared.model.device, dtype=torch.int64),
|
||||
input_embeds.unsqueeze(0).to(shared.model.device, dtype=shared.model.dtype))
|
||||
|
|
|
@ -1,13 +1,12 @@
|
|||
import logging
|
||||
|
||||
import chromadb
|
||||
import posthog
|
||||
import torch
|
||||
from chromadb.config import Settings
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
import chromadb
|
||||
from chromadb.config import Settings
|
||||
from modules.logging_colors import logger
|
||||
|
||||
logging.info('Intercepting all calls to posthog :)')
|
||||
logger.info('Intercepting all calls to posthog :)')
|
||||
posthog.capture = lambda *args, **kwargs: None
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import logging
|
||||
import re
|
||||
import textwrap
|
||||
|
||||
|
@ -6,6 +5,7 @@ import gradio as gr
|
|||
from bs4 import BeautifulSoup
|
||||
|
||||
from modules import chat, shared
|
||||
from modules.logging_colors import logger
|
||||
|
||||
from .chromadb import add_chunks_to_collector, make_collector
|
||||
from .download_urls import download_urls
|
||||
|
@ -123,14 +123,14 @@ def custom_generate_chat_prompt(user_input, state, **kwargs):
|
|||
if shared.history['internal'][id_][0] != '<|BEGIN-VISIBLE-CHAT|>':
|
||||
additional_context += make_single_exchange(id_)
|
||||
|
||||
logging.warning(f'Adding the following new context:\n{additional_context}')
|
||||
logger.warning(f'Adding the following new context:\n{additional_context}')
|
||||
state['context'] = state['context'].strip() + '\n' + additional_context
|
||||
kwargs['history'] = {
|
||||
'internal': [shared.history['internal'][i] for i in range(hist_size) if i not in best_ids],
|
||||
'visible': ''
|
||||
}
|
||||
except RuntimeError:
|
||||
logging.error("Couldn't query the database, moving on...")
|
||||
logger.error("Couldn't query the database, moving on...")
|
||||
|
||||
return chat.generate_chat_prompt(user_input, state, **kwargs)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue