Implement CFG for ExLlama_HF (#3666)
This commit is contained in:
parent
2b675533f7
commit
d6934bc7bc
8 changed files with 122 additions and 26 deletions
|
@ -33,7 +33,22 @@ class LlamacppHF(PreTrainedModel):
|
|||
super().__init__(PretrainedConfig())
|
||||
self.model = model
|
||||
self.generation_config = GenerationConfig()
|
||||
self.cache = None
|
||||
|
||||
self.past_seq = None
|
||||
self.llamacpp_cache = {
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids,
|
||||
'scores': self.model.scores
|
||||
}
|
||||
|
||||
if shared.args.cfg_cache:
|
||||
logger.warning('CFG is currently bugged and not functional for llamacpp_HF. Contributions are welcome.')
|
||||
self.past_seq_negative = None
|
||||
self.llamacpp_cache_negative = {
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids.copy(),
|
||||
'scores': self.model.scores.copy()
|
||||
}
|
||||
|
||||
def _validate_model_class(self):
|
||||
pass
|
||||
|
@ -44,36 +59,83 @@ class LlamacppHF(PreTrainedModel):
|
|||
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||||
return {'input_ids': input_ids, **kwargs}
|
||||
|
||||
def save_cache(self):
|
||||
self.llamacpp_cache.update({
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids,
|
||||
'scores': self.model.scores
|
||||
})
|
||||
|
||||
def save_negative_cache(self):
|
||||
self.llamacpp_cache_negative.update({
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids,
|
||||
'scores': self.model.scores
|
||||
})
|
||||
|
||||
def load_cache(self):
|
||||
self.model.n_tokens = self.llamacpp_cache['n_tokens']
|
||||
self.model.input_ids = self.llamacpp_cache['input_ids']
|
||||
self.model.scores = self.llamacpp_cache['scores']
|
||||
|
||||
def load_negative_cache(self):
|
||||
self.model.n_tokens = self.llamacpp_cache_negative['n_tokens']
|
||||
self.model.input_ids = self.llamacpp_cache_negative['input_ids']
|
||||
self.model.scores = self.llamacpp_cache_negative['scores']
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return torch.device(0)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
input_ids = args[0] if len(args) > 0 else kwargs['input_ids']
|
||||
use_cache = kwargs.get('use_cache', True)
|
||||
labels = kwargs.get('labels', None)
|
||||
cache = kwargs.get('past_key_values', None)
|
||||
past_key_values = kwargs.get('past_key_values', None)
|
||||
|
||||
if len(args) > 0:
|
||||
if not shared.args.cfg_cache:
|
||||
logger.error("Please enable the cfg-cache option to use CFG with llamacpp_HF.")
|
||||
logger.warning('CFG is currently bugged and not functional for llamacpp_HF. Contributions are welcome.')
|
||||
return
|
||||
|
||||
input_ids = args[0]
|
||||
is_negative = True
|
||||
past_seq = self.past_seq_negative
|
||||
self.load_negative_cache()
|
||||
else:
|
||||
input_ids = kwargs['input_ids']
|
||||
is_negative = False
|
||||
past_seq = self.past_seq
|
||||
self.load_cache()
|
||||
|
||||
seq = input_ids[0].tolist()
|
||||
if is_negative and past_key_values is not None:
|
||||
seq = past_key_values + seq
|
||||
|
||||
seq_tensor = torch.tensor(seq)
|
||||
|
||||
# Make the forward call
|
||||
seq_tensor = torch.tensor(seq)
|
||||
if labels is None:
|
||||
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]):
|
||||
if past_seq is None or not torch.equal(past_seq, seq_tensor[:-1]):
|
||||
self.model.reset()
|
||||
self.model.eval(seq)
|
||||
else:
|
||||
self.model.eval([seq[-1]])
|
||||
|
||||
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(kwargs['input_ids'].device)
|
||||
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(input_ids.device)
|
||||
else:
|
||||
self.model.reset()
|
||||
self.model.eval(seq)
|
||||
logits = torch.tensor(self.model.eval_logits)
|
||||
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device)
|
||||
|
||||
self.cache = seq_tensor
|
||||
if is_negative:
|
||||
self.save_negative_cache()
|
||||
self.past_seq_negative = seq_tensor
|
||||
else:
|
||||
self.save_cache()
|
||||
self.past_seq = seq_tensor
|
||||
|
||||
# Based on transformers/models/llama/modeling_llama.py
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
|
@ -87,7 +149,7 @@ class LlamacppHF(PreTrainedModel):
|
|||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue