Add ChatGLM support (#1256)

---------

Co-authored-by: oobabooga <112222186+oobabooga@users.noreply.github.com>
This commit is contained in:
Forkoz 2023-04-16 22:15:03 +00:00 committed by GitHub
parent 6a03ad0824
commit c6fe1ced01
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 31 additions and 10 deletions

View file

@ -10,8 +10,8 @@ import numpy as np
import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, LlamaTokenizer)
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoTokenizer, BitsAndBytesConfig, LlamaTokenizer)
import modules.shared as shared
from modules import llama_attn_hijack
@ -44,10 +44,16 @@ def load_model(model_name):
shared.is_RWKV = 'rwkv-' in model_name.lower()
shared.is_llamacpp = len(list(Path(f'{shared.args.model_dir}/{model_name}').glob('ggml*.bin'))) > 0
if 'chatglm' in model_name.lower():
LoaderClass = AutoModel
trust_remote_code = shared.args.trust_remote_code
else:
LoaderClass = AutoModelForCausalLM
trust_remote_code = False
# Load the model in simple 16-bit mode by default
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV, shared.is_llamacpp]):
model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=trust_remote_code)
if torch.has_mps:
device = torch.device('mps')
model = model.to(device)
@ -79,7 +85,7 @@ def load_model(model_name):
# DeepSpeed ZeRO-3
elif shared.args.deepspeed:
model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
model.module.eval() # Inference
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
@ -120,6 +126,7 @@ def load_model(model_name):
params["torch_dtype"] = torch.float32
else:
params["device_map"] = 'auto'
params["trust_remote_code"] = trust_remote_code
if shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)):
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
elif shared.args.load_in_8bit:
@ -156,7 +163,7 @@ def load_model(model_name):
if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto':
config = AutoConfig.from_pretrained(checkpoint)
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)
model = LoaderClass.from_config(config)
model.tie_weights()
params['device_map'] = infer_auto_device_map(
model,
@ -165,7 +172,7 @@ def load_model(model_name):
no_split_module_classes=model._no_split_modules
)
model = AutoModelForCausalLM.from_pretrained(checkpoint, **params)
model = LoaderClass.from_pretrained(checkpoint, **params)
# Hijack attention with xformers
if any((shared.args.xformers, shared.args.sdp_attention)):
@ -185,7 +192,7 @@ def load_model(model_name):
except:
pass
else:
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}/"))
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}/"), trust_remote_code=trust_remote_code)
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer