Make /v1/embeddings functional, add request/response types

This commit is contained in:
oobabooga 2023-11-10 07:34:27 -08:00
parent 7ed2143cd6
commit c5be3f7acb
6 changed files with 40 additions and 26 deletions

View file

@ -3,8 +3,7 @@ import os
import numpy as np
from extensions.openai.errors import ServiceUnavailableError
from extensions.openai.utils import debug_msg, float_list_to_base64
from modules import shared
from transformers import AutoModel
from modules.logging_colors import logger
embeddings_params_initialized = False
@ -16,38 +15,44 @@ def initialize_embedding_params():
'''
global embeddings_params_initialized
if not embeddings_params_initialized:
global st_model, embeddings_model, embeddings_device
from extensions.openai.script import params
global st_model, embeddings_model, embeddings_device
st_model = os.environ.get("OPENEDAI_EMBEDDING_MODEL", params.get('embedding_model', 'all-mpnet-base-v2'))
embeddings_model = None
# OPENEDAI_EMBEDDING_DEVICE: auto (best or cpu), cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone
embeddings_device = os.environ.get("OPENEDAI_EMBEDDING_DEVICE", params.get('embedding_device', 'cpu'))
if embeddings_device.lower() == 'auto':
embeddings_device = None
embeddings_params_initialized = True
def load_embedding_model(model: str):
try:
from sentence_transformers import SentenceTransformer
except ModuleNotFoundError:
logger.error("The sentence_transformers module has not been found. Please install it manually with pip install -U sentence-transformers.")
raise ModuleNotFoundError
initialize_embedding_params()
global embeddings_device, embeddings_model
try:
print(f"Try embedding model: {model} on {embeddings_device}")
trust = shared.args.trust_remote_code
if embeddings_device == 'cpu':
embeddings_model = AutoModel.from_pretrained(model, trust_remote_code=trust).to("cpu", dtype=float)
else: #use the auto mode
embeddings_model = AutoModel.from_pretrained(model, trust_remote_code=trust)
print(f"\nLoaded embedding model: {model} on {embeddings_model.device}")
embeddings_model = SentenceTransformer(model, device=embeddings_device)
print(f"Loaded embedding model: {model}")
except Exception as e:
embeddings_model = None
raise ServiceUnavailableError(f"Error: Failed to load embedding model: {model}", internal_message=repr(e))
def get_embeddings_model() -> AutoModel:
def get_embeddings_model():
initialize_embedding_params()
global embeddings_model, st_model
if st_model and not embeddings_model:
load_embedding_model(st_model) # lazy load the model
return embeddings_model
@ -66,9 +71,7 @@ def get_embeddings(input: list) -> np.ndarray:
def embeddings(input: list, encoding_format: str) -> dict:
embeddings = get_embeddings(input)
if encoding_format == "base64":
data = [{"object": "embedding", "embedding": float_list_to_base64(emb), "index": n} for n, emb in enumerate(embeddings)]
else:
@ -85,5 +88,4 @@ def embeddings(input: list, encoding_format: str) -> dict:
}
debug_msg(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}")
return response