From c07bcd0850ce0312826f6195450a3b04eb1788f8 Mon Sep 17 00:00:00 2001 From: "Alex \"mcmonkey\" Goodwin" Date: Mon, 27 Mar 2023 09:41:06 -0700 Subject: [PATCH] add some outputs to indicate progress updates (sorta) Actual progressbar still needed. Also minor formatting fixes. --- modules/training.py | 15 ++++++++++++--- server.py | 2 +- 2 files changed, 13 insertions(+), 4 deletions(-) diff --git a/modules/training.py b/modules/training.py index aa085fd..b9f3d19 100644 --- a/modules/training.py +++ b/modules/training.py @@ -19,7 +19,7 @@ def create_train_interface(): microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.') batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.') with gr.Row(): - epochs = gr.Number(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.') + epochs = gr.Number(label='Epochs', value=1, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.') learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.') # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale. loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.') @@ -50,6 +50,7 @@ def cleanPath(basePath: str, path: str): return f'{Path(basePath).absolute()}/{path}' def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str): + yield "Prepping..." # Input validation / processing # TODO: --lora-dir PR once pulled will need to be applied here loraName = f"loras/{cleanPath(None, loraName)}" @@ -80,6 +81,7 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le def generate_and_tokenize_prompt(data_point): prompt = generate_prompt(data_point) return tokenize(prompt) + print("Loading datasets...") data = load_dataset("json", data_files=cleanPath('training/datasets', f'{dataset}.json')) train_data = data['train'].shuffle().map(generate_and_tokenize_prompt) if evalDataset == 'None': @@ -89,7 +91,9 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt) # Start prepping the model itself if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'): + print("Getting model ready...") prepare_model_for_int8_training(shared.model) + print("Prepping for training...") config = LoraConfig( r=loraRank, lora_alpha=loraAlpha, @@ -121,7 +125,7 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le save_total_limit=3, load_best_model_at_end=True if evalData is not None else False, # TODO: Enable multi-device support - ddp_find_unused_parameters=None, + ddp_find_unused_parameters=None ), data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False), ) @@ -133,6 +137,11 @@ def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, le if torch.__version__ >= "2" and sys.platform != "win32": loraModel = torch.compile(loraModel) # Actually start and run and save at the end + # TODO: save/load checkpoints to resume from? + print("Starting training...") + yield "Running..." trainer.train() + print("Training complete, saving...") loraModel.save_pretrained(loraName) - return "Done!" + print("Training complete!") + yield f"Done! Lora saved to `{loraName}`" diff --git a/server.py b/server.py index 0e512c7..caca85c 100644 --- a/server.py +++ b/server.py @@ -490,7 +490,7 @@ def create_interface(): shared.gradio['reset_interface'].click(set_interface_arguments, [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'cmd_arguments_menu']], None) shared.gradio['reset_interface'].click(lambda : None, None, None, _js='() => {document.body.innerHTML=\'

Reloading...

\'; setTimeout(function(){location.reload()},2500)}') - + if shared.args.extensions is not None: extensions_module.create_extensions_block()