Better TTS with autoplay

- Adds "still_streaming" to shared module for extensions to know if generation is complete
- Changed TTS extension with new options:
   - Show text under the audio widget
   - Automatically play the audio once text generation finishes
   - manage the generated wav files (only keep files for finished generations, optional max file limit)
   - [wip] ability to change voice pitch and speed
- added 'tensorboard' to requirements, since python sent "tensorboard not found" errors after a fresh installation.
This commit is contained in:
Xan 2023-03-08 22:02:17 +11:00
parent c93f1fa99b
commit ad6b699503
5 changed files with 67 additions and 7 deletions

View file

@ -12,6 +12,7 @@ is_LLaMA = False
history = {'internal': [], 'visible': []}
character = 'None'
stop_everything = False
still_streaming = False
# UI elements (buttons, sliders, HTML, etc)
gradio = {}

View file

@ -182,6 +182,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
# Generate the reply 8 tokens at a time
else:
yield formatted_outputs(original_question, shared.model_name)
shared.still_streaming = True
for i in tqdm(range(max_new_tokens//8+1)):
with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
@ -191,8 +192,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
reply = decode(output)
if not (shared.args.chat or shared.args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
yield formatted_outputs(reply, shared.model_name)
if not shared.args.flexgen:
if output[-1] == n:
break
@ -201,6 +201,13 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
break
input_ids = np.reshape(output, (1, output.shape[0]))
#Mid-stream yield, ran if no breaks
yield formatted_outputs(reply, shared.model_name)
if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
#Stream finished from max tokens or break. Do final yield.
shared.still_streaming = False
yield formatted_outputs(reply, shared.model_name)