New text streaming method (much faster)
This commit is contained in:
parent
c09f416adb
commit
ab50f80542
4 changed files with 124 additions and 52 deletions
75
modules/callbacks.py
Normal file
75
modules/callbacks.py
Normal file
|
@ -0,0 +1,75 @@
|
||||||
|
from queue import Queue
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import transformers
|
||||||
|
|
||||||
|
import modules.shared as shared
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from https://github.com/PygmalionAI/gradio-ui/
|
||||||
|
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
|
||||||
|
|
||||||
|
def __init__(self, sentinel_token_ids: torch.LongTensor,
|
||||||
|
starting_idx: int):
|
||||||
|
transformers.StoppingCriteria.__init__(self)
|
||||||
|
self.sentinel_token_ids = sentinel_token_ids
|
||||||
|
self.starting_idx = starting_idx
|
||||||
|
|
||||||
|
def __call__(self, input_ids: torch.LongTensor,
|
||||||
|
_scores: torch.FloatTensor) -> bool:
|
||||||
|
for sample in input_ids:
|
||||||
|
trimmed_sample = sample[self.starting_idx:]
|
||||||
|
# Can't unfold, output is still too tiny. Skip.
|
||||||
|
if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for window in trimmed_sample.unfold(
|
||||||
|
0, self.sentinel_token_ids.shape[-1], 1):
|
||||||
|
if torch.all(torch.eq(self.sentinel_token_ids, window)):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
class Stream(transformers.StoppingCriteria):
|
||||||
|
def __init__(self, callback_func=None):
|
||||||
|
self.callback_func = callback_func
|
||||||
|
|
||||||
|
def __call__(self, input_ids, scores) -> bool:
|
||||||
|
if self.callback_func is not None:
|
||||||
|
self.callback_func(input_ids[0])
|
||||||
|
return False
|
||||||
|
|
||||||
|
class Iteratorize:
|
||||||
|
|
||||||
|
"""
|
||||||
|
Transforms a function that takes a callback
|
||||||
|
into a lazy iterator (generator).
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, func, kwargs={}, callback=None):
|
||||||
|
self.mfunc=func
|
||||||
|
self.c_callback=callback
|
||||||
|
self.q = Queue(maxsize=1)
|
||||||
|
self.sentinel = object()
|
||||||
|
self.kwargs = kwargs
|
||||||
|
|
||||||
|
def _callback(val):
|
||||||
|
self.q.put(val)
|
||||||
|
|
||||||
|
def gentask():
|
||||||
|
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||||
|
self.q.put(self.sentinel)
|
||||||
|
if self.c_callback:
|
||||||
|
self.c_callback(ret)
|
||||||
|
|
||||||
|
Thread(target=gentask).start()
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
obj = self.q.get(True,None)
|
||||||
|
if obj is self.sentinel:
|
||||||
|
raise StopIteration
|
||||||
|
else:
|
||||||
|
return obj
|
|
@ -1,32 +0,0 @@
|
||||||
'''
|
|
||||||
This code was copied from
|
|
||||||
|
|
||||||
https://github.com/PygmalionAI/gradio-ui/
|
|
||||||
|
|
||||||
'''
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import transformers
|
|
||||||
|
|
||||||
|
|
||||||
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
|
|
||||||
|
|
||||||
def __init__(self, sentinel_token_ids: torch.LongTensor,
|
|
||||||
starting_idx: int):
|
|
||||||
transformers.StoppingCriteria.__init__(self)
|
|
||||||
self.sentinel_token_ids = sentinel_token_ids
|
|
||||||
self.starting_idx = starting_idx
|
|
||||||
|
|
||||||
def __call__(self, input_ids: torch.LongTensor,
|
|
||||||
_scores: torch.FloatTensor) -> bool:
|
|
||||||
for sample in input_ids:
|
|
||||||
trimmed_sample = sample[self.starting_idx:]
|
|
||||||
# Can't unfold, output is still too tiny. Skip.
|
|
||||||
if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
|
|
||||||
continue
|
|
||||||
|
|
||||||
for window in trimmed_sample.unfold(
|
|
||||||
0, self.sentinel_token_ids.shape[-1], 1):
|
|
||||||
if torch.all(torch.eq(self.sentinel_token_ids, window)):
|
|
||||||
return True
|
|
||||||
return False
|
|
|
@ -5,13 +5,13 @@ import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
from modules.callbacks import (Iteratorize, Stream,
|
||||||
|
_SentinelTokenStoppingCriteria)
|
||||||
from modules.extensions import apply_extensions
|
from modules.extensions import apply_extensions
|
||||||
from modules.html_generator import generate_4chan_html, generate_basic_html
|
from modules.html_generator import generate_4chan_html, generate_basic_html
|
||||||
from modules.models import local_rank
|
from modules.models import local_rank
|
||||||
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
|
||||||
|
|
||||||
|
|
||||||
def get_max_prompt_length(tokens):
|
def get_max_prompt_length(tokens):
|
||||||
|
@ -103,7 +103,9 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
|
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
print(f"Output generated in {(t1-t0):.2f} seconds.")
|
output = encode(reply)[0]
|
||||||
|
input_ids = encode(question)
|
||||||
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
||||||
return
|
return
|
||||||
|
|
||||||
original_question = question
|
original_question = question
|
||||||
|
@ -113,6 +115,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||||
print(f"\n\n{question}\n--------------------\n")
|
print(f"\n\n{question}\n--------------------\n")
|
||||||
|
|
||||||
input_ids = encode(question, max_new_tokens)
|
input_ids = encode(question, max_new_tokens)
|
||||||
|
original_input_ids = input_ids
|
||||||
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
||||||
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
|
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
|
||||||
if stopping_string is not None:
|
if stopping_string is not None:
|
||||||
|
@ -126,10 +129,11 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||||
)
|
)
|
||||||
])
|
])
|
||||||
else:
|
else:
|
||||||
stopping_criteria_list = None
|
stopping_criteria_list = []
|
||||||
|
|
||||||
if not shared.args.flexgen:
|
if not shared.args.flexgen:
|
||||||
generate_params = [
|
generate_params = [
|
||||||
|
f"max_new_tokens=max_new_tokens",
|
||||||
f"eos_token_id={n}",
|
f"eos_token_id={n}",
|
||||||
f"stopping_criteria=stopping_criteria_list",
|
f"stopping_criteria=stopping_criteria_list",
|
||||||
f"do_sample={do_sample}",
|
f"do_sample={do_sample}",
|
||||||
|
@ -147,24 +151,21 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||||
]
|
]
|
||||||
else:
|
else:
|
||||||
generate_params = [
|
generate_params = [
|
||||||
|
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
|
||||||
f"do_sample={do_sample}",
|
f"do_sample={do_sample}",
|
||||||
f"temperature={temperature}",
|
f"temperature={temperature}",
|
||||||
f"stop={n}",
|
f"stop={n}",
|
||||||
]
|
]
|
||||||
if shared.args.deepspeed:
|
if shared.args.deepspeed:
|
||||||
generate_params.append("synced_gpus=True")
|
generate_params.append("synced_gpus=True")
|
||||||
if shared.args.no_stream:
|
|
||||||
generate_params.append("max_new_tokens=max_new_tokens")
|
|
||||||
else:
|
|
||||||
generate_params.append("max_new_tokens=8")
|
|
||||||
if shared.soft_prompt:
|
if shared.soft_prompt:
|
||||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||||
generate_params.insert(0, "inputs_embeds=inputs_embeds")
|
generate_params.insert(0, "inputs_embeds=inputs_embeds")
|
||||||
generate_params.insert(0, "filler_input_ids")
|
generate_params.insert(0, "inputs=filler_input_ids")
|
||||||
else:
|
else:
|
||||||
generate_params.insert(0, "input_ids")
|
generate_params.insert(0, "inputs=input_ids")
|
||||||
|
|
||||||
# Generate the entire reply at once
|
# Generate the entire reply at once.
|
||||||
if shared.args.no_stream:
|
if shared.args.no_stream:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||||
|
@ -175,18 +176,45 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||||
if not (shared.args.chat or shared.args.cai_chat):
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||||
|
|
||||||
t1 = time.time()
|
|
||||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
|
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
|
|
||||||
# Generate the reply 8 tokens at a time
|
# Stream the reply 1 token at a time.
|
||||||
else:
|
# This is based on the trick of using 'stopping_criteria' to create an iterator.
|
||||||
|
elif not shared.args.flexgen:
|
||||||
|
|
||||||
|
def generate_with_callback(callback=None, **kwargs):
|
||||||
|
if 'stopping_criteria' not in kwargs:
|
||||||
|
kwargs['stopping_criteria'] = []
|
||||||
|
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||||
|
shared.model.generate(**kwargs)[0]
|
||||||
|
|
||||||
|
def generate_with_streaming(**kwargs):
|
||||||
|
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||||
|
|
||||||
yield formatted_outputs(original_question, shared.model_name)
|
yield formatted_outputs(original_question, shared.model_name)
|
||||||
for i in tqdm(range(max_new_tokens//8+1)):
|
for output in eval(f"generate_with_streaming({', '.join(generate_params)})"):
|
||||||
|
if shared.soft_prompt:
|
||||||
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||||
|
|
||||||
|
reply = decode(output)
|
||||||
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||||
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
|
|
||||||
|
if not shared.args.flexgen:
|
||||||
|
if output[-1] == n:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
||||||
|
else:
|
||||||
|
for i in range(max_new_tokens//8+1):
|
||||||
clear_torch_cache()
|
clear_torch_cache()
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
|
||||||
if shared.soft_prompt:
|
if shared.soft_prompt:
|
||||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||||
|
|
||||||
|
@ -206,3 +234,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||||
|
|
||||||
if shared.soft_prompt:
|
if shared.soft_prompt:
|
||||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||||
|
|
||||||
|
t1 = time.time()
|
||||||
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")
|
||||||
|
return
|
||||||
|
|
|
@ -18,9 +18,6 @@ from modules.html_generator import generate_chat_html
|
||||||
from modules.models import load_model, load_soft_prompt
|
from modules.models import load_model, load_soft_prompt
|
||||||
from modules.text_generation import generate_reply
|
from modules.text_generation import generate_reply
|
||||||
|
|
||||||
if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
|
|
||||||
print('Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n')
|
|
||||||
|
|
||||||
# Loading custom settings
|
# Loading custom settings
|
||||||
settings_file = None
|
settings_file = None
|
||||||
if shared.args.settings is not None and Path(shared.args.settings).exists():
|
if shared.args.settings is not None and Path(shared.args.settings).exists():
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue