New text streaming method (much faster)

This commit is contained in:
oobabooga 2023-03-08 02:46:35 -03:00
parent c09f416adb
commit ab50f80542
4 changed files with 124 additions and 52 deletions

View file

@ -5,13 +5,13 @@ import time
import numpy as np
import torch
import transformers
from tqdm import tqdm
import modules.shared as shared
from modules.callbacks import (Iteratorize, Stream,
_SentinelTokenStoppingCriteria)
from modules.extensions import apply_extensions
from modules.html_generator import generate_4chan_html, generate_basic_html
from modules.models import local_rank
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
def get_max_prompt_length(tokens):
@ -103,7 +103,9 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
yield formatted_outputs(reply, shared.model_name)
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds.")
output = encode(reply)[0]
input_ids = encode(question)
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
return
original_question = question
@ -113,6 +115,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
print(f"\n\n{question}\n--------------------\n")
input_ids = encode(question, max_new_tokens)
original_input_ids = input_ids
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
if stopping_string is not None:
@ -126,10 +129,11 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
)
])
else:
stopping_criteria_list = None
stopping_criteria_list = []
if not shared.args.flexgen:
generate_params = [
f"max_new_tokens=max_new_tokens",
f"eos_token_id={n}",
f"stopping_criteria=stopping_criteria_list",
f"do_sample={do_sample}",
@ -147,24 +151,21 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
]
else:
generate_params = [
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
f"do_sample={do_sample}",
f"temperature={temperature}",
f"stop={n}",
]
if shared.args.deepspeed:
generate_params.append("synced_gpus=True")
if shared.args.no_stream:
generate_params.append("max_new_tokens=max_new_tokens")
else:
generate_params.append("max_new_tokens=8")
if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
generate_params.insert(0, "inputs_embeds=inputs_embeds")
generate_params.insert(0, "filler_input_ids")
generate_params.insert(0, "inputs=filler_input_ids")
else:
generate_params.insert(0, "input_ids")
generate_params.insert(0, "inputs=input_ids")
# Generate the entire reply at once
# Generate the entire reply at once.
if shared.args.no_stream:
with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
@ -175,18 +176,45 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if not (shared.args.chat or shared.args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
yield formatted_outputs(reply, shared.model_name)
# Generate the reply 8 tokens at a time
else:
# Stream the reply 1 token at a time.
# This is based on the trick of using 'stopping_criteria' to create an iterator.
elif not shared.args.flexgen:
def generate_with_callback(callback=None, **kwargs):
if 'stopping_criteria' not in kwargs:
kwargs['stopping_criteria'] = []
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
shared.model.generate(**kwargs)[0]
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs, callback=None)
yield formatted_outputs(original_question, shared.model_name)
for i in tqdm(range(max_new_tokens//8+1)):
for output in eval(f"generate_with_streaming({', '.join(generate_params)})"):
if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
reply = decode(output)
if not (shared.args.chat or shared.args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
yield formatted_outputs(reply, shared.model_name)
if not shared.args.flexgen:
if output[-1] == n:
break
else:
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
break
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
else:
for i in range(max_new_tokens//8+1):
clear_torch_cache()
with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
@ -206,3 +234,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")
return