extensions/openai: Fixes for: embeddings, tokens, better errors. +Docs update, +Images, +logit_bias/logprobs, +more. (#3122)
This commit is contained in:
parent
1141987a0d
commit
90a4ab631c
10 changed files with 215 additions and 143 deletions
|
@ -1,43 +1,54 @@
|
|||
import os
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import numpy as np
|
||||
from extensions.openai.utils import float_list_to_base64, debug_msg
|
||||
from extensions.openai.errors import *
|
||||
|
||||
st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2"
|
||||
embeddings_model = None
|
||||
# OPENEDAI_EMBEDDING_DEVICE: auto (best or cpu), cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone
|
||||
embeddings_device = os.environ.get("OPENEDAI_EMBEDDING_DEVICE", "cpu")
|
||||
if embeddings_device.lower() == 'auto':
|
||||
embeddings_device = None
|
||||
|
||||
|
||||
def load_embedding_model(model):
|
||||
def load_embedding_model(model: str) -> SentenceTransformer:
|
||||
global embeddings_device, embeddings_model
|
||||
try:
|
||||
emb_model = SentenceTransformer(model)
|
||||
print(f"\nLoaded embedding model: {model}, max sequence length: {emb_model.max_seq_length}")
|
||||
embeddings_model = 'loading...' # flag
|
||||
# see: https://www.sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer
|
||||
emb_model = SentenceTransformer(model, device=embeddings_device)
|
||||
# ... emb_model.device doesn't seem to work, always cpu anyways? but specify cpu anyways to free more VRAM
|
||||
print(f"\nLoaded embedding model: {model} on {emb_model.device} [always seems to say 'cpu', even if 'cuda'], max sequence length: {emb_model.max_seq_length}")
|
||||
except Exception as e:
|
||||
print(f"\nError: Failed to load embedding model: {model}")
|
||||
embeddings_model = None
|
||||
raise ServiceUnavailableError(f"Error: Failed to load embedding model: {model}", internal_message=repr(e))
|
||||
|
||||
return emb_model
|
||||
|
||||
|
||||
def get_embeddings_model():
|
||||
def get_embeddings_model() -> SentenceTransformer:
|
||||
global embeddings_model, st_model
|
||||
if st_model and not embeddings_model:
|
||||
embeddings_model = load_embedding_model(st_model) # lazy load the model
|
||||
return embeddings_model
|
||||
|
||||
|
||||
def get_embeddings_model_name():
|
||||
def get_embeddings_model_name() -> str:
|
||||
global st_model
|
||||
return st_model
|
||||
|
||||
|
||||
def embeddings(input: list, encoding_format: str):
|
||||
def get_embeddings(input: list) -> np.ndarray:
|
||||
return get_embeddings_model().encode(input, convert_to_numpy=True, normalize_embeddings=True, convert_to_tensor=False, device=embeddings_device)
|
||||
|
||||
embeddings = get_embeddings_model().encode(input).tolist()
|
||||
def embeddings(input: list, encoding_format: str) -> dict:
|
||||
|
||||
embeddings = get_embeddings(input)
|
||||
|
||||
if encoding_format == "base64":
|
||||
data = [{"object": "embedding", "embedding": float_list_to_base64(emb), "index": n} for n, emb in enumerate(embeddings)]
|
||||
else:
|
||||
data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)]
|
||||
data = [{"object": "embedding", "embedding": emb.tolist(), "index": n} for n, emb in enumerate(embeddings)]
|
||||
|
||||
response = {
|
||||
"object": "list",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue