Use 'torch.backends.mps.is_available' to check if mps is supported (#3164)

This commit is contained in:
appe233 2023-07-18 08:27:18 +08:00 committed by GitHub
parent 234c58ccd1
commit 89e0d15cf5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 4 additions and 4 deletions

View file

@ -147,7 +147,7 @@ def huggingface_loader(model_name):
# Load the model in simple 16-bit mode by default
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]):
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code)
if torch.has_mps:
if torch.backends.mps.is_available():
device = torch.device('mps')
model = model.to(device)
else:
@ -167,7 +167,7 @@ def huggingface_loader(model_name):
"trust_remote_code": shared.args.trust_remote_code
}
if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)):
if not any((shared.args.cpu, torch.cuda.is_available(), torch.backends.mps.is_available())):
logger.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.")
shared.args.cpu = True