Add the option to use samplers in the logit viewer
This commit is contained in:
parent
25e5eaa6a6
commit
8545052c9d
8 changed files with 75 additions and 18 deletions
|
@ -1,19 +1,30 @@
|
|||
import torch
|
||||
|
||||
from modules import shared
|
||||
from modules import sampler_hijack, shared
|
||||
from modules.text_generation import generate_reply
|
||||
|
||||
global_scores = None
|
||||
|
||||
|
||||
def get_next_logits(prompt):
|
||||
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda()
|
||||
output = shared.model(input_ids=tokens)
|
||||
def get_next_logits(prompt, state, use_samplers, previous):
|
||||
if use_samplers:
|
||||
state['max_new_tokens'] = 1
|
||||
state['auto_max_new_tokens'] = False
|
||||
for _ in generate_reply(prompt, state):
|
||||
pass
|
||||
|
||||
scores = sampler_hijack.global_scores[-1]
|
||||
else:
|
||||
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda()
|
||||
output = shared.model(input_ids=tokens)
|
||||
scores = output['logits'][-1][-1]
|
||||
|
||||
scores = output['logits'][-1][-1]
|
||||
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
|
||||
|
||||
topk_values, topk_indices = torch.topk(probs, k=20, largest=True, sorted=True)
|
||||
topk_values = [f"{float(i):.5f}" % i for i in topk_values]
|
||||
topk_values = [f"{float(i):.5f}" for i in topk_values]
|
||||
|
||||
output = ''
|
||||
for row in list(zip(topk_values, shared.tokenizer.convert_ids_to_tokens(topk_indices))):
|
||||
output += f"{row[0]} {row[1]}\n"
|
||||
output += f"{row[0]} - {row[1]}\n"
|
||||
|
||||
return output
|
||||
return output, previous
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue