allow custom stopping strings in all modes (#903)
This commit is contained in:
parent
0f212093a3
commit
78bbc66fc4
5 changed files with 37 additions and 23 deletions
|
@ -74,8 +74,18 @@ def generate_chat_prompt(user_input, max_new_tokens, name1, name2, context, chat
|
|||
return prompt
|
||||
|
||||
|
||||
def get_stopping_strings(state):
|
||||
if state['mode'] == 'instruct':
|
||||
stopping_strings = [f"\n{state['name1']}", f"\n{state['name2']}"]
|
||||
else:
|
||||
stopping_strings = [f"\n{state['name1']}:", f"\n{state['name2']}:"]
|
||||
stopping_strings += state['custom_stopping_strings']
|
||||
return stopping_strings
|
||||
|
||||
|
||||
def extract_message_from_reply(reply, state):
|
||||
next_character_found = False
|
||||
stopping_strings = get_stopping_strings(state)
|
||||
|
||||
if state['stop_at_newline']:
|
||||
lines = reply.split('\n')
|
||||
|
@ -83,7 +93,7 @@ def extract_message_from_reply(reply, state):
|
|||
if len(lines) > 1:
|
||||
next_character_found = True
|
||||
else:
|
||||
for string in [f"\n{state['name1']}:", f"\n{state['name2']}:"]:
|
||||
for string in stopping_strings:
|
||||
idx = reply.find(string)
|
||||
if idx != -1:
|
||||
reply = reply[:idx]
|
||||
|
@ -92,7 +102,7 @@ def extract_message_from_reply(reply, state):
|
|||
# If something like "\nYo" is generated just before "\nYou:"
|
||||
# is completed, trim it
|
||||
if not next_character_found:
|
||||
for string in [f"\n{state['name1']}:", f"\n{state['name2']}:"]:
|
||||
for string in stopping_strings:
|
||||
for j in range(len(string) - 1, 0, -1):
|
||||
if reply[-j:] == string[:j]:
|
||||
reply = reply[:-j]
|
||||
|
@ -106,10 +116,6 @@ def extract_message_from_reply(reply, state):
|
|||
|
||||
|
||||
def chatbot_wrapper(text, state, regenerate=False, _continue=False):
|
||||
if state['mode'] == 'instruct':
|
||||
stopping_strings = [f"\n{state['name1']}", f"\n{state['name2']}"]
|
||||
else:
|
||||
stopping_strings = [f"\n{state['name1']}:", f"\n{state['name2']}:"]
|
||||
|
||||
# Defining some variables
|
||||
cumulative_reply = ''
|
||||
|
@ -117,6 +123,7 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False):
|
|||
just_started = True
|
||||
visible_text = custom_generate_chat_prompt = None
|
||||
eos_token = '\n' if state['stop_at_newline'] else None
|
||||
stopping_strings = get_stopping_strings(state)
|
||||
|
||||
# Check if any extension wants to hijack this function call
|
||||
for extension, _ in extensions_module.iterator():
|
||||
|
@ -186,15 +193,12 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False):
|
|||
|
||||
|
||||
def impersonate_wrapper(text, state):
|
||||
if state['mode'] == 'instruct':
|
||||
stopping_strings = [f"\n{state['name1']}", f"\n{state['name2']}"]
|
||||
else:
|
||||
stopping_strings = [f"\n{state['name1']}:", f"\n{state['name2']}:"]
|
||||
|
||||
# Defining some variables
|
||||
cumulative_reply = ''
|
||||
eos_token = '\n' if state['stop_at_newline'] else None
|
||||
prompt = generate_chat_prompt(text, state['max_new_tokens'], state['name1'], state['name2'], state['context'], state['chat_prompt_size'], end_of_turn=state['end_of_turn'], impersonate=True)
|
||||
stopping_strings = get_stopping_strings(state)
|
||||
|
||||
# Yield *Is typing...*
|
||||
yield shared.processing_message
|
||||
|
@ -498,4 +502,4 @@ def upload_your_profile_picture(img, name1, name2, mode):
|
|||
img.save(Path('cache/pfp_me.png'))
|
||||
print('Profile picture saved to "cache/pfp_me.png"')
|
||||
|
||||
return chat_html_wrapper(shared.history['visible'], name1, name2, mode, reset_cache=True)
|
||||
return chat_html_wrapper(shared.history['visible'], name1, name2, mode, reset_cache=True)
|
|
@ -34,6 +34,7 @@ settings = {
|
|||
'context': 'This is a conversation with your Assistant. The Assistant is very helpful and is eager to chat with you and answer your questions.',
|
||||
'greeting': 'Hello there!',
|
||||
'end_of_turn': '',
|
||||
'custom_stopping_strings': '',
|
||||
'stop_at_newline': False,
|
||||
'add_bos_token': True,
|
||||
'chat_prompt_size': 2048,
|
||||
|
|
|
@ -174,10 +174,14 @@ def generate_reply(question, state, eos_token=None, stopping_strings=[]):
|
|||
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
|
||||
if eos_token is not None:
|
||||
eos_token_ids.append(int(encode(eos_token)[0][-1]))
|
||||
|
||||
# Handling the stopping strings
|
||||
stopping_criteria_list = transformers.StoppingCriteriaList()
|
||||
if type(stopping_strings) is list and len(stopping_strings) > 0:
|
||||
t = [encode(string, 0, add_special_tokens=False) for string in stopping_strings]
|
||||
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
|
||||
for st in [stopping_strings, state['custom_stopping_strings']]:
|
||||
if type(st) is list and len(st) > 0:
|
||||
sentinel_token_ids = [encode(string, 0, add_special_tokens=False) for string in st]
|
||||
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=sentinel_token_ids, starting_idx=len(input_ids[0])))
|
||||
break
|
||||
|
||||
if not shared.args.flexgen:
|
||||
for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue