Merge branch 'main' into main

This commit is contained in:
Alexander Hristov Hristov 2023-03-13 19:50:08 +02:00 committed by GitHub
commit 63c5a139a2
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 158 additions and 81 deletions

View file

@ -25,10 +25,10 @@ class RWKVModel:
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
if shared.args.rwkv_strategy is None:
model = RWKV(model=os.path.abspath(path), strategy=f'{device} {dtype}')
model = RWKV(model=str(path), strategy=f'{device} {dtype}')
else:
model = RWKV(model=os.path.abspath(path), strategy=shared.args.rwkv_strategy)
pipeline = PIPELINE(model, os.path.abspath(tokenizer_path))
model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy)
pipeline = PIPELINE(model, str(tokenizer_path))
result = self()
result.pipeline = pipeline
@ -61,7 +61,7 @@ class RWKVTokenizer:
@classmethod
def from_pretrained(self, path):
tokenizer_path = path / "20B_tokenizer.json"
tokenizer = Tokenizer.from_file(os.path.abspath(tokenizer_path))
tokenizer = Tokenizer.from_file(str(tokenizer_path))
result = self()
result.tokenizer = tokenizer

View file

@ -22,6 +22,12 @@ def clean_chat_message(text):
text = text.strip()
return text
def generate_chat_output(history, name1, name2, character):
if shared.args.cai_chat:
return generate_chat_html(history, name1, name2, character)
else:
return history
def generate_chat_prompt(user_input, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=False):
user_input = clean_chat_message(user_input)
rows = [f"{context.strip()}\n"]
@ -53,7 +59,6 @@ def generate_chat_prompt(user_input, max_new_tokens, name1, name2, context, chat
def extract_message_from_reply(question, reply, name1, name2, check, impersonate=False):
next_character_found = False
substring_found = False
asker = name1 if not impersonate else name2
replier = name2 if not impersonate else name1
@ -79,15 +84,15 @@ def extract_message_from_reply(question, reply, name1, name2, check, impersonate
next_character_found = True
reply = clean_chat_message(reply)
# Detect if something like "\nYo" is generated just before
# "\nYou:" is completed
tmp = f"\n{asker}:"
for j in range(1, len(tmp)):
if reply[-j:] == tmp[:j]:
# If something like "\nYo" is generated just before "\nYou:"
# is completed, trim it
next_turn = f"\n{asker}:"
for j in range(len(next_turn)-1, 0, -1):
if reply[-j:] == next_turn[:j]:
reply = reply[:-j]
substring_found = True
break
return reply, next_character_found, substring_found
return reply, next_character_found
def stop_everything_event():
shared.stop_everything = True
@ -122,7 +127,6 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
if not regenerate:
# Display user input and "*is typing...*" imediately
yield shared.history['visible']+[[visible_text, '*Is typing...*']]
# Generate
@ -131,7 +135,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
# Extracting the reply
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check)
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check)
visible_reply = re.sub("(<USER>|<user>|{{user}})", name1_original, reply)
visible_reply = apply_extensions(visible_reply, "output")
if shared.args.chat:
@ -148,7 +152,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
shared.history['internal'][-1] = [text, reply]
shared.history['visible'][-1] = [visible_text, visible_reply]
if not substring_found and not shared.args.no_stream:
if not shared.args.no_stream:
yield shared.history['visible']
if next_character_found:
break
@ -163,15 +167,12 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True)
# Display "*is typing...*" imediately
yield '*Is typing...*'
reply = ''
yield '*Is typing...*'
for i in range(chat_generation_attempts):
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
if not substring_found:
yield reply
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
yield reply
if next_character_found:
break
yield reply
@ -182,21 +183,18 @@ def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
if shared.args.cai_chat:
yield generate_chat_html(shared.history['visible'], name1, name2, shared.character)
else:
yield shared.history['visible']
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
else:
last_visible = shared.history['visible'].pop()
last_internal = shared.history['internal'].pop()
yield generate_chat_output(shared.history['visible']+[[last_visible[0], '*Is typing...*']], name1, name2, shared.character)
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
if shared.args.cai_chat:
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
yield generate_chat_html(shared.history['visible'], name1, name2, shared.character)
else:
shared.history['visible'][-1] = (last_visible[0], _history[-1][1])
yield shared.history['visible']
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
def remove_last_message(name1, name2):
if len(shared.history['visible']) > 0 and not shared.history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
@ -204,6 +202,7 @@ def remove_last_message(name1, name2):
shared.history['internal'].pop()
else:
last = ['', '']
if shared.args.cai_chat:
return generate_chat_html(shared.history['visible'], name1, name2, shared.character), last[0]
else:
@ -223,10 +222,7 @@ def replace_last_reply(text, name1, name2):
shared.history['visible'][-1] = (shared.history['visible'][-1][0], text)
shared.history['internal'][-1][1] = apply_extensions(text, "input")
if shared.args.cai_chat:
return generate_chat_html(shared.history['visible'], name1, name2, shared.character)
else:
return shared.history['visible']
return generate_chat_output(shared.history['visible'], name1, name2, shared.character)
def clear_html():
return generate_chat_html([], "", "", shared.character)
@ -246,10 +242,8 @@ def clear_chat_log(name1, name2):
else:
shared.history['internal'] = []
shared.history['visible'] = []
if shared.args.cai_chat:
return generate_chat_html(shared.history['visible'], name1, name2, shared.character)
else:
return shared.history['visible']
return generate_chat_output(shared.history['visible'], name1, name2, shared.character)
def redraw_html(name1, name2):
return generate_chat_html(shared.history['visible'], name1, name2, shared.character)

View file

@ -1,4 +1,3 @@
import os
import sys
from pathlib import Path
@ -7,7 +6,7 @@ import torch
import modules.shared as shared
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
from llama import load_quant
@ -41,9 +40,9 @@ def load_quantized_LLaMA(model_name):
print(f"Could not find {pt_model}, exiting...")
exit()
model = load_quant(path_to_model, os.path.abspath(pt_path), bits)
model = load_quant(str(path_to_model), str(pt_path), bits)
# Multi-GPU setup
# Multiple GPUs or GPU+CPU
if shared.args.gpu_memory:
max_memory = {}
for i in range(len(shared.args.gpu_memory)):

View file

@ -85,12 +85,12 @@ parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory t
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time. This improves the text generation performance.')
parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time.')
parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example. If you create a file called settings.json, this file will be loaded by default without the need to use the --settings flag.')
parser.add_argument('--extensions', type=str, nargs="+", help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch')
args = parser.parse_args()

View file

@ -37,9 +37,13 @@ def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
return input_ids.cuda()
def decode(output_ids):
reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
reply = reply.replace(r'<|endoftext|>', '')
return reply
# Open Assistant relies on special tokens like <|endoftext|>
if re.match('oasst-*', shared.model_name.lower()):
return shared.tokenizer.decode(output_ids, skip_special_tokens=False)
else:
reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
reply = reply.replace(r'<|endoftext|>', '')
return reply
def generate_softprompt_input_tensors(input_ids):
inputs_embeds = shared.model.transformer.wte(input_ids)
@ -119,7 +123,9 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
original_input_ids = input_ids
output = input_ids[0]
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
if eos_token is not None:
eos_token_ids.append(int(encode(eos_token)[0][-1]))
stopping_criteria_list = transformers.StoppingCriteriaList()
if stopping_string is not None:
# Copied from https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
@ -129,7 +135,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if not shared.args.flexgen:
generate_params = [
f"max_new_tokens=max_new_tokens",
f"eos_token_id={n}",
f"eos_token_id={eos_token_ids}",
f"stopping_criteria=stopping_criteria_list",
f"do_sample={do_sample}",
f"temperature={temperature}",
@ -149,7 +155,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
f"do_sample={do_sample}",
f"temperature={temperature}",
f"stop={n}",
f"stop={eos_token_ids[-1]}",
]
if shared.args.deepspeed:
generate_params.append("synced_gpus=True")
@ -196,10 +202,12 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if not (shared.args.chat or shared.args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
if output[-1] in eos_token_ids:
break
yield formatted_outputs(reply, shared.model_name)
if output[-1] == n:
break
yield formatted_outputs(reply, shared.model_name)
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
else:
@ -213,15 +221,17 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if not (shared.args.chat or shared.args.cai_chat):
reply = original_question + apply_extensions(reply[len(question):], "output")
yield formatted_outputs(reply, shared.model_name)
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
break
yield formatted_outputs(reply, shared.model_name)
input_ids = np.reshape(output, (1, output.shape[0]))
if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
yield formatted_outputs(reply, shared.model_name)
finally:
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")