Implement a demo HF wrapper for exllama to utilize existing HF transformers decoding. (#2777)
This commit is contained in:
parent
a06acd6d09
commit
580c1ee748
7 changed files with 101 additions and 6 deletions
82
modules/exllama_hf.py
Normal file
82
modules/exllama_hf.py
Normal file
|
@ -0,0 +1,82 @@
|
|||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import *
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
GenerationConfig,
|
||||
LlamaTokenizer,
|
||||
PretrainedConfig,
|
||||
PreTrainedModel
|
||||
)
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
from modules.relative_imports import RelativeImport
|
||||
|
||||
with RelativeImport("repositories/exllama"):
|
||||
from model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||||
|
||||
|
||||
class ExllamaHF(PreTrainedModel):
|
||||
def __init__(self, config: ExLlamaConfig):
|
||||
super().__init__(PretrainedConfig())
|
||||
self.ex_config = config
|
||||
self.ex_model = ExLlama(self.ex_config)
|
||||
self.generation_config = GenerationConfig()
|
||||
|
||||
def _validate_model_class(self):
|
||||
pass
|
||||
|
||||
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
|
||||
pass
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||||
return {'input_ids': input_ids, **kwargs}
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
# TODO: May cause problem on multi-gpu inference?
|
||||
return torch.device(0)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time
|
||||
assert len(args) == 0, 'no *args should be passed to forward'
|
||||
use_cache = kwargs['use_cache']
|
||||
seq = kwargs['input_ids'][0].tolist()
|
||||
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
|
||||
if cache is None:
|
||||
cache = ExLlamaCache(self.ex_model)
|
||||
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True)
|
||||
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache).to(self.device)
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
||||
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
|
||||
if isinstance(pretrained_model_name_or_path, str):
|
||||
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
|
||||
|
||||
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
|
||||
config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json')
|
||||
|
||||
# from 'oobabooga/text-generation-webui/modules/exllama.py'
|
||||
weight_path = None
|
||||
for ext in ['.safetensors', '.pt', '.bin']:
|
||||
found = list(pretrained_model_name_or_path.glob(f"*{ext}"))
|
||||
if len(found) > 0:
|
||||
weight_path = found[-1]
|
||||
break
|
||||
assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"'
|
||||
|
||||
config.model_path = str(weight_path)
|
||||
|
||||
# This slowes down a bit but align better with autogptq generation.
|
||||
# TODO: Should give user choice to tune the exllama config
|
||||
config.act_order = True
|
||||
config.fused_attn = False
|
||||
config.fused_mlp_thd = 0
|
||||
|
||||
return ExllamaHF(config)
|
Loading…
Add table
Add a link
Reference in a new issue