This commit is contained in:
Xan 2023-03-08 22:08:54 +11:00
commit 5648a41a27
16 changed files with 352 additions and 166 deletions

View file

@ -21,21 +21,20 @@ def get_max_prompt_length(tokens):
return max_length
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
# These models do not have explicit tokenizers for now, so
# we return an estimate for the number of tokens
if shared.is_RWKV or shared.is_LLaMA:
return np.zeros((1, len(prompt)//4))
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
if shared.args.cpu:
if shared.is_RWKV:
input_ids = shared.tokenizer.encode(str(prompt))
input_ids = np.array(input_ids).reshape(1, len(input_ids))
return input_ids
elif shared.args.flexgen:
return input_ids.numpy()
elif shared.args.deepspeed:
return input_ids.to(device=local_rank)
else:
return input_ids.cuda()
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
if shared.args.cpu:
return input_ids
elif shared.args.flexgen:
return input_ids.numpy()
elif shared.args.deepspeed:
return input_ids.to(device=local_rank)
else:
return input_ids.cuda()
def decode(output_ids):
reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)
@ -81,26 +80,30 @@ def formatted_outputs(reply, model_name):
else:
return reply
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
torch.cuda.empty_cache()
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
clear_torch_cache()
t0 = time.time()
# These models are not part of Hugging Face, so we handle them
# separately and terminate the function call earlier
if shared.is_RWKV or shared.is_LLaMA:
if shared.is_RWKV:
if shared.args.no_stream:
reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p)
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds.")
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
yield formatted_outputs(reply, shared.model_name)
else:
for i in tqdm(range(max_new_tokens//8+1)):
reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p)
yield formatted_outputs(question, shared.model_name)
# RWKV has proper streaming, which is very nice.
# No need to generate 8 tokens at a time.
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
yield formatted_outputs(reply, shared.model_name)
question = reply
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds.")
return
original_question = question
@ -111,8 +114,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
input_ids = encode(question, max_new_tokens)
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
n = shared.tokenizer.eos_token_id if eos_token is None else encode(eos_token)[0][-1]
n = shared.tokenizer.eos_token_id if eos_token is None else int(encode(eos_token)[0][-1])
if stopping_string is not None:
# The stopping_criteria code below was copied from
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
@ -149,14 +151,12 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
f"temperature={temperature}",
f"stop={n}",
]
if shared.args.deepspeed:
generate_params.append("synced_gpus=True")
if shared.args.no_stream:
generate_params.append("max_new_tokens=max_new_tokens")
else:
generate_params.append("max_new_tokens=8")
if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
generate_params.insert(0, "inputs_embeds=inputs_embeds")
@ -184,6 +184,8 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
yield formatted_outputs(original_question, shared.model_name)
shared.still_streaming = True
for i in tqdm(range(max_new_tokens//8+1)):
clear_torch_cache()
with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
if shared.soft_prompt: