Use separate llama-cpp-python packages for GGML support

This commit is contained in:
jllllll 2023-08-26 09:15:11 -05:00
parent 6e6431e73f
commit 4a999e3bcd
No known key found for this signature in database
GPG key ID: 7FCD00C417935797
7 changed files with 74 additions and 17 deletions

View file

@ -9,23 +9,38 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import RoPE, shared
from modules.logging_colors import logger
from modules.utils import is_gguf
import llama_cpp
try:
import llama_cpp_ggml
except:
llama_cpp_ggml = llama_cpp
if torch.cuda.is_available() and not torch.version.hip:
try:
import llama_cpp_cuda
except:
llama_cpp_cuda = None
try:
import llama_cpp_ggml_cuda
except:
llama_cpp_ggml_cuda = llama_cpp_cuda
else:
llama_cpp_cuda = None
llama_cpp_ggml_cuda = None
def llama_cpp_lib():
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp
def llama_cpp_lib(model_file: Union[str, Path] = None):
if model_file is not None:
gguf_model = is_gguf(model_file)
else:
return llama_cpp_cuda
gguf_model = True
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp if gguf_model else llama_cpp_ggml
else:
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
class LlamacppHF(PreTrainedModel):
@ -165,7 +180,7 @@ class LlamacppHF(PreTrainedModel):
if path.is_file():
model_file = path
else:
model_file = list(path.glob('*.gguf*'))[0]
model_file = (list(path.glob('*.gguf*')) + list(path.glob('*ggml*.bin')))[0]
logger.info(f"llama.cpp weights detected: {model_file}\n")
@ -193,7 +208,7 @@ class LlamacppHF(PreTrainedModel):
'logits_all': True,
}
Llama = llama_cpp_lib().Llama
Llama = llama_cpp_lib(model_file).Llama
model = Llama(**params)
return LlamacppHF(model)

View file

@ -1,5 +1,7 @@
import re
from functools import partial
from pathlib import Path
from typing import Union
import torch
@ -7,23 +9,38 @@ from modules import RoPE, shared
from modules.callbacks import Iteratorize
from modules.logging_colors import logger
from modules.text_generation import get_max_prompt_length
from modules.utils import is_gguf
import llama_cpp
try:
import llama_cpp_ggml
except:
llama_cpp_ggml = llama_cpp
if torch.cuda.is_available() and not torch.version.hip:
try:
import llama_cpp_cuda
except:
llama_cpp_cuda = None
try:
import llama_cpp_ggml_cuda
except:
llama_cpp_ggml_cuda = llama_cpp_cuda
else:
llama_cpp_cuda = None
llama_cpp_ggml_cuda = None
def llama_cpp_lib():
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp
def llama_cpp_lib(model_file: Union[str, Path] = None):
if model_file is not None:
gguf_model = is_gguf(model_file)
else:
return llama_cpp_cuda
gguf_model = True
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp if gguf_model else llama_cpp_ggml
else:
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
def ban_eos_logits_processor(eos_token, input_ids, logits):
@ -41,8 +58,8 @@ class LlamaCppModel:
@classmethod
def from_pretrained(self, path):
Llama = llama_cpp_lib().Llama
LlamaCache = llama_cpp_lib().LlamaCache
Llama = llama_cpp_lib(str(path)).Llama
LlamaCache = llama_cpp_lib(str(path)).LlamaCache
result = self()
cache_capacity = 0

View file

@ -241,7 +241,7 @@ def llamacpp_loader(model_name):
if path.is_file():
model_file = path
else:
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf*'))[0]
model_file = (list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf*')) + list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin')))[0]
logger.info(f"llama.cpp weights detected: {model_file}")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)

View file

@ -24,9 +24,9 @@ def infer_loader(model_name):
loader = None
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
loader = 'AutoGPTQ'
elif len(list(path_to_model.glob('*.gguf*'))) > 0:
elif len(list(path_to_model.glob('*.gguf*')) + list(path_to_model.glob('*ggml*.bin'))) > 0:
loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()):
elif re.match(r'.*\.gguf|.*ggml.*\.bin', model_name.lower()):
loader = 'llama.cpp'
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
loader = 'RWKV'

View file

@ -2,6 +2,7 @@ import os
import re
from datetime import datetime
from pathlib import Path
from typing import Union
from modules import shared
from modules.logging_colors import logger
@ -124,3 +125,11 @@ def get_datasets(path: str, ext: str):
def get_available_chat_styles():
return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys)
# Determines if a llama.cpp model is in GGUF format
# Copied from ctransformers utils.py
def is_gguf(path: Union[str, Path]) -> bool:
path = str(Path(path).resolve())
with open(path, "rb") as f:
magic = f.read(4)
return magic == "GGUF".encode()