Add support for the latest GPTQ models with group-size (#530)

**Warning: old 4-bit weights will not work anymore!**

See here how to get up to date weights: https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model#step-2-get-the-pre-converted-weights
This commit is contained in:
oobabooga 2023-03-26 00:11:33 -03:00 committed by GitHub
parent 8c8e8b4450
commit 49c10c5570
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 64 additions and 43 deletions

View file

@ -14,18 +14,21 @@ import opt
def load_quantized(model_name):
if not shared.args.gptq_model_type:
if not shared.args.model_type:
# Try to determine model type from model name
model_type = model_name.split('-')[0].lower()
if model_type not in ('llama', 'opt'):
print("Can't determine model type from model name. Please specify it manually using --gptq-model-type "
if model_name.lower().startswith(('llama', 'alpaca')):
model_type = 'llama'
elif model_name.lower().startswith(('opt', 'galactica')):
model_type = 'opt'
else:
print("Can't determine model type from model name. Please specify it manually using --model_type "
"argument")
exit()
else:
model_type = shared.args.gptq_model_type.lower()
model_type = shared.args.model_type.lower()
if model_type == 'llama':
if not shared.args.gptq_pre_layer:
if not shared.args.pre_layer:
load_quant = llama.load_quant
else:
load_quant = llama_inference_offload.load_quant
@ -35,35 +38,44 @@ def load_quantized(model_name):
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported")
exit()
# Now we are going to try to locate the quantized model file.
path_to_model = Path(f'models/{model_name}')
if path_to_model.name.lower().startswith('llama-7b'):
pt_model = f'llama-7b-{shared.args.gptq_bits}bit'
elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = f'llama-13b-{shared.args.gptq_bits}bit'
elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = f'llama-30b-{shared.args.gptq_bits}bit'
elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = f'llama-65b-{shared.args.gptq_bits}bit'
else:
pt_model = f'{model_name}-{shared.args.gptq_bits}bit'
# Try to find the .safetensors or .pt both in models/ and in the subfolder
found_pts = list(path_to_model.glob("*.pt"))
found_safetensors = list(path_to_model.glob("*.safetensors"))
pt_path = None
for path in [Path(p+ext) for ext in ['.safetensors', '.pt'] for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
if path.exists():
print(f"Found {path}")
pt_path = path
break
if len(found_pts) == 1:
pt_path = found_pts[0]
elif len(found_safetensors) == 1:
pt_path = found_safetensors[0]
else:
if path_to_model.name.lower().startswith('llama-7b'):
pt_model = f'llama-7b-{shared.args.wbits}bit'
elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = f'llama-13b-{shared.args.wbits}bit'
elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = f'llama-30b-{shared.args.wbits}bit'
elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = f'llama-65b-{shared.args.wbits}bit'
else:
pt_model = f'{model_name}-{shared.args.wbits}bit'
# Try to find the .safetensors or .pt both in models/ and in the subfolder
for path in [Path(p+ext) for ext in ['.safetensors', '.pt'] for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
if path.exists():
print(f"Found {path}")
pt_path = path
break
if not pt_path:
print(f"Could not find {pt_model}, exiting...")
print("Could not find the quantized model in .pt or .safetensors format, exiting...")
exit()
# qwopqwop200's offload
if shared.args.gptq_pre_layer:
model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits, shared.args.gptq_pre_layer)
if shared.args.pre_layer:
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
else:
model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits)
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize)
# accelerate offload (doesn't work properly)
if shared.args.gpu_memory: