Refactor several function calls and the API
This commit is contained in:
parent
378d21e80c
commit
3f3e42e26c
8 changed files with 147 additions and 118 deletions
|
@ -102,10 +102,11 @@ def set_manual_seed(seed):
|
|||
def stop_everything_event():
|
||||
shared.stop_everything = True
|
||||
|
||||
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=None, stopping_strings=[]):
|
||||
def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]):
|
||||
clear_torch_cache()
|
||||
set_manual_seed(seed)
|
||||
set_manual_seed(generate_state['seed'])
|
||||
shared.stop_everything = False
|
||||
generate_params = {}
|
||||
t0 = time.time()
|
||||
|
||||
original_question = question
|
||||
|
@ -117,9 +118,12 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||
# These models are not part of Hugging Face, so we handle them
|
||||
# separately and terminate the function call earlier
|
||||
if any((shared.is_RWKV, shared.is_llamacpp)):
|
||||
for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
|
||||
generate_params[k] = generate_state[k]
|
||||
generate_params["token_count"] = generate_state["max_new_tokens"]
|
||||
try:
|
||||
if shared.args.no_stream:
|
||||
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
||||
reply = shared.model.generate(context=question, **generate_params)
|
||||
output = original_question+reply
|
||||
if not shared.is_chat():
|
||||
reply = original_question + apply_extensions(reply, "output")
|
||||
|
@ -130,7 +134,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||
|
||||
# RWKV has proper streaming, which is very nice.
|
||||
# No need to generate 8 tokens at a time.
|
||||
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty):
|
||||
for reply in shared.model.generate_with_streaming(context=question, **generate_params):
|
||||
output = original_question+reply
|
||||
if not shared.is_chat():
|
||||
reply = original_question + apply_extensions(reply, "output")
|
||||
|
@ -145,7 +149,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||
print(f"Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})")
|
||||
return
|
||||
|
||||
input_ids = encode(question, max_new_tokens)
|
||||
input_ids = encode(question, generate_state['max_new_tokens'])
|
||||
original_input_ids = input_ids
|
||||
output = input_ids[0]
|
||||
|
||||
|
@ -158,33 +162,21 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||
t = [encode(string, 0, add_special_tokens=False) for string in stopping_strings]
|
||||
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
|
||||
|
||||
generate_params = {}
|
||||
generate_params["max_new_tokens"] = generate_state['max_new_tokens']
|
||||
if not shared.args.flexgen:
|
||||
generate_params.update({
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"eos_token_id": eos_token_ids,
|
||||
"stopping_criteria": stopping_criteria_list,
|
||||
"do_sample": do_sample,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"typical_p": typical_p,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"encoder_repetition_penalty": encoder_repetition_penalty,
|
||||
"top_k": top_k,
|
||||
"min_length": min_length if shared.args.no_stream else 0,
|
||||
"no_repeat_ngram_size": no_repeat_ngram_size,
|
||||
"num_beams": num_beams,
|
||||
"penalty_alpha": penalty_alpha,
|
||||
"length_penalty": length_penalty,
|
||||
"early_stopping": early_stopping,
|
||||
})
|
||||
for k in ["do_sample", "temperature", "top_p", "typical_p", "repetition_penalty", "encoder_repetition_penalty", "top_k", "min_length", "no_repeat_ngram_size", "num_beams", "penalty_alpha", "length_penalty", "early_stopping"]:
|
||||
generate_params[k] = generate_state[k]
|
||||
generate_params["eos_token_id"] = eos_token_ids
|
||||
generate_params["stopping_criteria"] = stopping_criteria_list
|
||||
if shared.args.no_stream:
|
||||
generate_params["min_length"] = 0
|
||||
else:
|
||||
generate_params.update({
|
||||
"max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
|
||||
"do_sample": do_sample,
|
||||
"temperature": temperature,
|
||||
"stop": eos_token_ids[-1],
|
||||
})
|
||||
for k in ["do_sample", "temperature"]:
|
||||
generate_params[k] = generate_state[k]
|
||||
generate_params["stop"] = generate_state["eos_token_ids"][-1]
|
||||
if not shared.args.no_stream:
|
||||
generate_params["max_new_tokens"] = 8
|
||||
|
||||
if shared.args.no_cache:
|
||||
generate_params.update({"use_cache": False})
|
||||
if shared.args.deepspeed:
|
||||
|
@ -244,7 +236,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||
|
||||
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
||||
else:
|
||||
for i in range(max_new_tokens//8+1):
|
||||
for i in range(generate_state['max_new_tokens']//8+1):
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
output = shared.model.generate(**generate_params)[0]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue