Refactor several function calls and the API

This commit is contained in:
oobabooga 2023-04-06 01:22:15 -03:00 committed by GitHub
parent 378d21e80c
commit 3f3e42e26c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 147 additions and 118 deletions

38
modules/api.py Normal file
View file

@ -0,0 +1,38 @@
import json
import gradio as gr
from modules import shared
from modules.text_generation import generate_reply
def generate_reply_wrapper(string):
generate_params = {
'do_sample': True,
'temperature': 1,
'top_p': 1,
'typical_p': 1,
'repetition_penalty': 1,
'encoder_repetition_penalty': 1,
'top_k': 50,
'num_beams': 1,
'penalty_alpha': 0,
'min_length': 0,
'length_penalty': 1,
'no_repeat_ngram_size': 0,
'early_stopping': False,
}
params = json.loads(string)
for k in params[1]:
generate_params[k] = params[1][k]
for i in generate_reply(params[0], generate_params):
yield i
def create_apis():
t1 = gr.Textbox(visible=False)
t2 = gr.Textbox(visible=False)
dummy = gr.Button(visible=False)
input_params = [t1]
output_params = [t2] + [shared.gradio[k] for k in ['markdown', 'html']]
dummy.click(generate_reply_wrapper, input_params, output_params, api_name='textgen')

View file

@ -18,7 +18,12 @@ from modules.text_generation import (encode, generate_reply,
get_max_prompt_length)
def generate_chat_prompt(user_input, max_new_tokens, name1, name2, context, chat_prompt_size, is_instruct, end_of_turn="", impersonate=False, also_return_rows=False):
def generate_chat_prompt(user_input, max_new_tokens, name1, name2, context, chat_prompt_size, **kwargs):
is_instruct = kwargs['is_instruct'] if 'is_instruct' in kwargs else False
end_of_turn = kwargs['end_of_turn'] if 'end_of_turn' in kwargs else ''
impersonate = kwargs['impersonate'] if 'impersonate' in kwargs else False
also_return_rows = kwargs['also_return_rows'] if 'also_return_rows' in kwargs else False
user_input = fix_newlines(user_input)
rows = [f"{context.strip()}\n"]
@ -91,9 +96,9 @@ def extract_message_from_reply(reply, name1, name2, stop_at_newline):
reply = fix_newlines(reply)
return reply, next_character_found
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, regenerate=False, mode="cai-chat", end_of_turn=""):
def chatbot_wrapper(text, generate_state, name1, name2, context, mode, end_of_turn, regenerate=False):
just_started = True
eos_token = '\n' if stop_at_newline else None
eos_token = '\n' if generate_state['stop_at_newline'] else None
name1_original = name1
if 'pygmalion' in shared.model_name.lower():
name1 = "You"
@ -112,11 +117,11 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
visible_text = text
text = apply_extensions(text, "input")
is_instruct = mode == 'instruct'
kwargs = {'end_of_turn': end_of_turn, 'is_instruct': mode == 'instruct'}
if custom_generate_chat_prompt is None:
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, is_instruct, end_of_turn=end_of_turn)
prompt = generate_chat_prompt(text, generate_state['max_new_tokens'], name1, name2, context, generate_state['chat_prompt_size'], **kwargs)
else:
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, is_instruct, end_of_turn=end_of_turn)
prompt = custom_generate_chat_prompt(text, generate_state['max_new_tokens'], name1, name2, context, generate_state['chat_prompt_size'], **kwargs)
# Yield *Is typing...*
if not regenerate:
@ -124,13 +129,13 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
# Generate
cumulative_reply = ''
for i in range(chat_generation_attempts):
for i in range(generate_state['chat_generation_attempts']):
reply = None
for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", generate_state, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
reply = cumulative_reply + reply
# Extracting the reply
reply, next_character_found = extract_message_from_reply(reply, name1, name2, stop_at_newline)
reply, next_character_found = extract_message_from_reply(reply, name1, name2, generate_state['stop_at_newline'])
visible_reply = re.sub("(<USER>|<user>|{{user}})", name1_original, reply)
visible_reply = apply_extensions(visible_reply, "output")
@ -155,23 +160,23 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
yield shared.history['visible']
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
eos_token = '\n' if stop_at_newline else None
def impersonate_wrapper(text, generate_state, name1, name2, context, mode, end_of_turn):
eos_token = '\n' if generate_state['stop_at_newline'] else None
if 'pygmalion' in shared.model_name.lower():
name1 = "You"
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True, end_of_turn=end_of_turn)
prompt = generate_chat_prompt(text, generate_state['max_new_tokens'], name1, name2, context, generate_state['chat_prompt_size'], impersonate=True, end_of_turn=end_of_turn)
# Yield *Is typing...*
yield shared.processing_message
cumulative_reply = ''
for i in range(chat_generation_attempts):
for i in range(generate_state['chat_generation_attempts']):
reply = None
for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
for reply in generate_reply(f"{prompt}{' ' if len(cumulative_reply) > 0 else ''}{cumulative_reply}", generate_state, eos_token=eos_token, stopping_strings=[f"\n{name1}:", f"\n{name2}:"]):
reply = cumulative_reply + reply
reply, next_character_found = extract_message_from_reply(reply, name1, name2, stop_at_newline)
reply, next_character_found = extract_message_from_reply(reply, name1, name2, generate_state['stop_at_newline'])
yield reply
if next_character_found:
break
@ -181,11 +186,11 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
yield reply
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
for history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts, regenerate=False, mode=mode, end_of_turn=end_of_turn):
def cai_chatbot_wrapper(text, generate_state, name1, name2, context, mode, end_of_turn):
for history in chatbot_wrapper(text, generate_state, name1, name2, context, mode, end_of_turn, regenerate=False):
yield chat_html_wrapper(history, name1, name2, mode)
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts=1, mode="cai-chat", end_of_turn=""):
def regenerate_wrapper(text, generate_state, name1, name2, context, mode, end_of_turn):
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
yield chat_html_wrapper(shared.history['visible'], name1, name2, mode)
else:
@ -193,7 +198,7 @@ def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typi
last_internal = shared.history['internal'].pop()
# Yield '*Is typing...*'
yield chat_html_wrapper(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, mode)
for history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, name1, name2, context, stop_at_newline, chat_prompt_size, chat_generation_attempts, regenerate=True, mode=mode, end_of_turn=end_of_turn):
for history in chatbot_wrapper(last_internal[0], generate_state, name1, name2, context, mode, end_of_turn, regenerate=True):
shared.history['visible'][-1] = [last_visible[0], history[-1][1]]
yield chat_html_wrapper(shared.history['visible'], name1, name2, mode)

View file

@ -102,10 +102,11 @@ def set_manual_seed(seed):
def stop_everything_event():
shared.stop_everything = True
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, seed, eos_token=None, stopping_strings=[]):
def generate_reply(question, generate_state, eos_token=None, stopping_strings=[]):
clear_torch_cache()
set_manual_seed(seed)
set_manual_seed(generate_state['seed'])
shared.stop_everything = False
generate_params = {}
t0 = time.time()
original_question = question
@ -117,9 +118,12 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
# These models are not part of Hugging Face, so we handle them
# separately and terminate the function call earlier
if any((shared.is_RWKV, shared.is_llamacpp)):
for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
generate_params[k] = generate_state[k]
generate_params["token_count"] = generate_state["max_new_tokens"]
try:
if shared.args.no_stream:
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
reply = shared.model.generate(context=question, **generate_params)
output = original_question+reply
if not shared.is_chat():
reply = original_question + apply_extensions(reply, "output")
@ -130,7 +134,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
# RWKV has proper streaming, which is very nice.
# No need to generate 8 tokens at a time.
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty):
for reply in shared.model.generate_with_streaming(context=question, **generate_params):
output = original_question+reply
if not shared.is_chat():
reply = original_question + apply_extensions(reply, "output")
@ -145,7 +149,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
print(f"Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens})")
return
input_ids = encode(question, max_new_tokens)
input_ids = encode(question, generate_state['max_new_tokens'])
original_input_ids = input_ids
output = input_ids[0]
@ -158,33 +162,21 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
t = [encode(string, 0, add_special_tokens=False) for string in stopping_strings]
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
generate_params = {}
generate_params["max_new_tokens"] = generate_state['max_new_tokens']
if not shared.args.flexgen:
generate_params.update({
"max_new_tokens": max_new_tokens,
"eos_token_id": eos_token_ids,
"stopping_criteria": stopping_criteria_list,
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"typical_p": typical_p,
"repetition_penalty": repetition_penalty,
"encoder_repetition_penalty": encoder_repetition_penalty,
"top_k": top_k,
"min_length": min_length if shared.args.no_stream else 0,
"no_repeat_ngram_size": no_repeat_ngram_size,
"num_beams": num_beams,
"penalty_alpha": penalty_alpha,
"length_penalty": length_penalty,
"early_stopping": early_stopping,
})
for k in ["do_sample", "temperature", "top_p", "typical_p", "repetition_penalty", "encoder_repetition_penalty", "top_k", "min_length", "no_repeat_ngram_size", "num_beams", "penalty_alpha", "length_penalty", "early_stopping"]:
generate_params[k] = generate_state[k]
generate_params["eos_token_id"] = eos_token_ids
generate_params["stopping_criteria"] = stopping_criteria_list
if shared.args.no_stream:
generate_params["min_length"] = 0
else:
generate_params.update({
"max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
"do_sample": do_sample,
"temperature": temperature,
"stop": eos_token_ids[-1],
})
for k in ["do_sample", "temperature"]:
generate_params[k] = generate_state[k]
generate_params["stop"] = generate_state["eos_token_ids"][-1]
if not shared.args.no_stream:
generate_params["max_new_tokens"] = 8
if shared.args.no_cache:
generate_params.update({"use_cache": False})
if shared.args.deepspeed:
@ -244,7 +236,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
else:
for i in range(max_new_tokens//8+1):
for i in range(generate_state['max_new_tokens']//8+1):
clear_torch_cache()
with torch.no_grad():
output = shared.model.generate(**generate_params)[0]