extensions/openai: Major openai extension updates & fixes (#3049)
* many openai updates * total reorg & cleanup. * fixups * missing import os for images * +moderations, custom_stopping_strings, more fixes * fix bugs in completion streaming * moderation fix (flagged) * updated moderation categories --------- Co-authored-by: Matthew Ashton <mashton-gitlab@zhero.org>
This commit is contained in:
parent
8db7e857b1
commit
3e7feb699c
13 changed files with 1246 additions and 767 deletions
70
extensions/openai/moderations.py
Normal file
70
extensions/openai/moderations.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
import time
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
from extensions.openai.embeddings import get_embeddings_model
|
||||
|
||||
|
||||
moderations_disabled = False # return 0/false
|
||||
category_embeddings = None
|
||||
antonym_embeddings = None
|
||||
categories = [ "sexual", "hate", "harassment", "self-harm", "sexual/minors", "hate/threatening", "violence/graphic", "self-harm/intent", "self-harm/instructions", "harassment/threatening", "violence" ]
|
||||
flag_threshold = 0.5
|
||||
|
||||
|
||||
def get_category_embeddings():
|
||||
global category_embeddings, categories
|
||||
if category_embeddings is None:
|
||||
embeddings = get_embeddings_model().encode(categories).tolist()
|
||||
category_embeddings = dict(zip(categories, embeddings))
|
||||
|
||||
return category_embeddings
|
||||
|
||||
|
||||
def cosine_similarity(a, b):
|
||||
return np.dot(a, b) / (norm(a) * norm(b))
|
||||
|
||||
|
||||
# seems most openai like with all-mpnet-base-v2
|
||||
def mod_score(a, b):
|
||||
return 2.0 * np.dot(a, b)
|
||||
|
||||
|
||||
def moderations(input):
|
||||
global category_embeddings, categories, flag_threshold, moderations_disabled
|
||||
results = {
|
||||
"id": f"modr-{int(time.time()*1e9)}",
|
||||
"model": "text-moderation-001",
|
||||
"results": [],
|
||||
}
|
||||
|
||||
embeddings_model = get_embeddings_model()
|
||||
if not embeddings_model or moderations_disabled:
|
||||
results['results'] = [{
|
||||
'categories': dict([ (C, False) for C in categories]),
|
||||
'category_scores': dict([ (C, 0.0) for C in categories]),
|
||||
'flagged': False,
|
||||
}]
|
||||
return results
|
||||
|
||||
category_embeddings = get_category_embeddings()
|
||||
|
||||
|
||||
# input, string or array
|
||||
if isinstance(input, str):
|
||||
input = [input]
|
||||
|
||||
for in_str in input:
|
||||
for ine in embeddings_model.encode([in_str]).tolist():
|
||||
category_scores = dict([ (C, mod_score(category_embeddings[C], ine)) for C in categories ])
|
||||
category_flags = dict([ (C, bool(category_scores[C] > flag_threshold)) for C in categories ])
|
||||
flagged = any(category_flags.values())
|
||||
|
||||
results['results'].extend([{
|
||||
'flagged': flagged,
|
||||
'categories': category_flags,
|
||||
'category_scores': category_scores,
|
||||
}])
|
||||
|
||||
print(results)
|
||||
|
||||
return results
|
Loading…
Add table
Add a link
Reference in a new issue