Use Path.stem for simplicity
This commit is contained in:
parent
ea97303509
commit
2a267011dc
2 changed files with 6 additions and 6 deletions
|
@ -20,7 +20,7 @@ MAX_STEPS = 0
|
|||
CURRENT_GRADIENT_ACCUM = 1
|
||||
|
||||
def get_dataset(path: str, ext: str):
|
||||
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob(f'*.{ext}'))), key=str.lower)
|
||||
return ['None'] + sorted(set((k.stem for k in Path(path).glob(f'*.{ext}'))), key=str.lower)
|
||||
|
||||
def create_train_interface():
|
||||
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
||||
|
@ -104,7 +104,7 @@ def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int
|
|||
actual_lr = float(learning_rate)
|
||||
|
||||
if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
|
||||
yield f"Cannot input zeroes."
|
||||
yield "Cannot input zeroes."
|
||||
return
|
||||
|
||||
gradient_accumulation_steps = batch_size // micro_batch_size
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue