Add LoRA support to ExLlama_HF
This commit is contained in:
parent
b7c627f9a0
commit
22d455b072
3 changed files with 17 additions and 7 deletions
|
|
@ -11,7 +11,7 @@ from modules.models import reload_model
|
|||
def add_lora_to_model(lora_names):
|
||||
if 'GPTQForCausalLM' in shared.model.__class__.__name__:
|
||||
add_lora_autogptq(lora_names)
|
||||
elif shared.model.__class__.__name__ == 'ExllamaModel':
|
||||
elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF']:
|
||||
add_lora_exllama(lora_names)
|
||||
else:
|
||||
add_lora_transformers(lora_names)
|
||||
|
|
@ -29,7 +29,11 @@ def add_lora_exllama(lora_names):
|
|||
return
|
||||
|
||||
if len(lora_names) == 0:
|
||||
shared.model.generator.lora = None
|
||||
if shared.model.__class__.__name__ == 'ExllamaModel':
|
||||
shared.model.generator.lora = None
|
||||
else:
|
||||
shared.model.lora = None
|
||||
|
||||
shared.lora_names = []
|
||||
return
|
||||
else:
|
||||
|
|
@ -41,8 +45,13 @@ def add_lora_exllama(lora_names):
|
|||
lora_adapter_path = lora_path / "adapter_model.bin"
|
||||
|
||||
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
||||
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path))
|
||||
shared.model.generator.lora = lora
|
||||
if shared.model.__class__.__name__ == 'ExllamaModel':
|
||||
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path))
|
||||
shared.model.generator.lora = lora
|
||||
else:
|
||||
lora = ExLlamaLora(shared.model.ex_model, str(lora_config_path), str(lora_adapter_path))
|
||||
shared.model.lora = lora
|
||||
|
||||
shared.lora_names = [lora_names[0]]
|
||||
return
|
||||
|
||||
|
|
|
|||
|
|
@ -30,6 +30,7 @@ class ExllamaHF(PreTrainedModel):
|
|||
self.ex_config = config
|
||||
self.ex_model = ExLlama(self.ex_config)
|
||||
self.generation_config = GenerationConfig()
|
||||
self.lora = None
|
||||
|
||||
def _validate_model_class(self):
|
||||
pass
|
||||
|
|
@ -53,9 +54,9 @@ class ExllamaHF(PreTrainedModel):
|
|||
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
|
||||
if cache is None:
|
||||
cache = ExLlamaCache(self.ex_model)
|
||||
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True)
|
||||
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora)
|
||||
|
||||
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache).to(kwargs['input_ids'].device)
|
||||
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(kwargs['input_ids'].device)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue