Experimental jank multiGPU inference that's 2x faster than native somehow (#2100)
This commit is contained in:
parent
fd743a0207
commit
1f50dbe352
4 changed files with 10 additions and 3 deletions
|
@ -240,7 +240,7 @@ Optionally, you can use the following command-line flags:
|
|||
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
|
||||
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
|
||||
| `--groupsize GROUPSIZE` | Group size. |
|
||||
| `--pre_layer PRE_LAYER` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. |
|
||||
| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. |
|
||||
| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. |
|
||||
| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models.
|
||||
| `--quant_attn` | (triton) Enable quant attention. |
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue