Make it possible to download protected HF models from the command line. (#2408)
This commit is contained in:
parent
419c34eca4
commit
1aed2b9e52
3 changed files with 172 additions and 157 deletions
|
@ -156,7 +156,9 @@ For example:
|
||||||
|
|
||||||
python download-model.py facebook/opt-1.3b
|
python download-model.py facebook/opt-1.3b
|
||||||
|
|
||||||
If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary.
|
* If you want to download a model manually, note that all you need are the json, txt, and pytorch\*.bin (or model*.safetensors) files. The remaining files are not necessary.
|
||||||
|
|
||||||
|
* If you want to download a protected model (one gated behind accepting a license or otherwise private, like `bigcode/starcoder`) you can set the environment variables `HF_USER` to your huggingface username and `HF_PASS` to your password or (_as a better option_) to a [User Access Token](https://huggingface.co/settings/tokens). Note that you will need to accept the model terms on the Hugging Face website before starting the download.
|
||||||
|
|
||||||
#### GGML models
|
#### GGML models
|
||||||
|
|
||||||
|
|
|
@ -12,6 +12,7 @@ import datetime
|
||||||
import hashlib
|
import hashlib
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
|
import os
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -70,20 +71,29 @@ EleutherAI/pythia-1.4b-deduped
|
||||||
return model, branch
|
return model, branch
|
||||||
|
|
||||||
|
|
||||||
def sanitize_model_and_branch_names(model, branch):
|
class ModelDownloader:
|
||||||
|
def __init__(self):
|
||||||
|
self.s = requests.Session()
|
||||||
|
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
|
||||||
|
self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
|
||||||
|
|
||||||
|
|
||||||
|
def sanitize_model_and_branch_names(self, model, branch):
|
||||||
if model[-1] == '/':
|
if model[-1] == '/':
|
||||||
model = model[:-1]
|
model = model[:-1]
|
||||||
|
|
||||||
if branch is None:
|
if branch is None:
|
||||||
branch = "main"
|
branch = "main"
|
||||||
else:
|
else:
|
||||||
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
|
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
|
||||||
if not pattern.match(branch):
|
if not pattern.match(branch):
|
||||||
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
|
raise ValueError(
|
||||||
|
"Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
|
||||||
|
|
||||||
return model, branch
|
return model, branch
|
||||||
|
|
||||||
|
|
||||||
def get_download_links_from_huggingface(model, branch, text_only=False):
|
def get_download_links_from_huggingface(self, model, branch, text_only=False):
|
||||||
base = "https://huggingface.co"
|
base = "https://huggingface.co"
|
||||||
page = f"/api/models/{model}/tree/{branch}"
|
page = f"/api/models/{model}/tree/{branch}"
|
||||||
cursor = b""
|
cursor = b""
|
||||||
|
@ -98,7 +108,7 @@ def get_download_links_from_huggingface(model, branch, text_only=False):
|
||||||
is_lora = False
|
is_lora = False
|
||||||
while True:
|
while True:
|
||||||
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
|
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
|
||||||
r = requests.get(url, timeout=10)
|
r = self.s.get(url, timeout=10)
|
||||||
r.raise_for_status()
|
r.raise_for_status()
|
||||||
content = r.content
|
content = r.content
|
||||||
|
|
||||||
|
@ -111,20 +121,21 @@ def get_download_links_from_huggingface(model, branch, text_only=False):
|
||||||
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
|
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
|
||||||
is_lora = True
|
is_lora = True
|
||||||
|
|
||||||
is_pytorch = re.match("(pytorch|adapter|gptq)_model.*\.bin", fname)
|
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
|
||||||
is_safetensors = re.match(".*\.safetensors", fname)
|
is_safetensors = re.match(".*\.safetensors", fname)
|
||||||
is_pt = re.match(".*\.pt", fname)
|
is_pt = re.match(".*\.pt", fname)
|
||||||
is_ggml = re.match(".*ggml.*\.bin", fname)
|
is_ggml = re.match(".*ggml.*\.bin", fname)
|
||||||
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
|
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
|
||||||
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
|
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
|
||||||
|
|
||||||
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
|
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
|
||||||
if 'lfs' in dict[i]:
|
if 'lfs' in dict[i]:
|
||||||
sha256.append([fname, dict[i]['lfs']['oid']])
|
sha256.append([fname, dict[i]['lfs']['oid']])
|
||||||
|
|
||||||
if is_text:
|
if is_text:
|
||||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||||
classifications.append('text')
|
classifications.append('text')
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if not text_only:
|
if not text_only:
|
||||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||||
if is_safetensors:
|
if is_safetensors:
|
||||||
|
@ -153,7 +164,7 @@ def get_download_links_from_huggingface(model, branch, text_only=False):
|
||||||
return links, sha256, is_lora
|
return links, sha256, is_lora
|
||||||
|
|
||||||
|
|
||||||
def get_output_folder(model, branch, is_lora, base_folder=None):
|
def get_output_folder(self, model, branch, is_lora, base_folder=None):
|
||||||
if base_folder is None:
|
if base_folder is None:
|
||||||
base_folder = 'models' if not is_lora else 'loras'
|
base_folder = 'models' if not is_lora else 'loras'
|
||||||
|
|
||||||
|
@ -164,12 +175,12 @@ def get_output_folder(model, branch, is_lora, base_folder=None):
|
||||||
return output_folder
|
return output_folder
|
||||||
|
|
||||||
|
|
||||||
def get_single_file(url, output_folder, start_from_scratch=False):
|
def get_single_file(self, url, output_folder, start_from_scratch=False):
|
||||||
filename = Path(url.rsplit('/', 1)[1])
|
filename = Path(url.rsplit('/', 1)[1])
|
||||||
output_path = output_folder / filename
|
output_path = output_folder / filename
|
||||||
if output_path.exists() and not start_from_scratch:
|
if output_path.exists() and not start_from_scratch:
|
||||||
# Check if the file has already been downloaded completely
|
# Check if the file has already been downloaded completely
|
||||||
r = requests.get(url, stream=True, timeout=10)
|
r = self.s.get(url, stream=True, timeout=10)
|
||||||
total_size = int(r.headers.get('content-length', 0))
|
total_size = int(r.headers.get('content-length', 0))
|
||||||
if output_path.stat().st_size >= total_size:
|
if output_path.stat().st_size >= total_size:
|
||||||
return
|
return
|
||||||
|
@ -180,7 +191,7 @@ def get_single_file(url, output_folder, start_from_scratch=False):
|
||||||
headers = {}
|
headers = {}
|
||||||
mode = 'wb'
|
mode = 'wb'
|
||||||
|
|
||||||
r = requests.get(url, stream=True, headers=headers, timeout=10)
|
r = self.s.get(url, stream=True, headers=headers, timeout=10)
|
||||||
with open(output_path, mode) as f:
|
with open(output_path, mode) as f:
|
||||||
total_size = int(r.headers.get('content-length', 0))
|
total_size = int(r.headers.get('content-length', 0))
|
||||||
block_size = 1024
|
block_size = 1024
|
||||||
|
@ -190,11 +201,11 @@ def get_single_file(url, output_folder, start_from_scratch=False):
|
||||||
f.write(data)
|
f.write(data)
|
||||||
|
|
||||||
|
|
||||||
def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1):
|
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=1):
|
||||||
thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
|
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
|
||||||
|
|
||||||
|
|
||||||
def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
|
def download_model_files(self, model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
|
||||||
# Creating the folder and writing the metadata
|
# Creating the folder and writing the metadata
|
||||||
if not output_folder.exists():
|
if not output_folder.exists():
|
||||||
output_folder.mkdir(parents=True, exist_ok=True)
|
output_folder.mkdir(parents=True, exist_ok=True)
|
||||||
|
@ -210,10 +221,10 @@ def download_model_files(model, branch, links, sha256, output_folder, start_from
|
||||||
|
|
||||||
# Downloading the files
|
# Downloading the files
|
||||||
print(f"Downloading the model to {output_folder}")
|
print(f"Downloading the model to {output_folder}")
|
||||||
start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
|
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
|
||||||
|
|
||||||
|
|
||||||
def check_model_files(model, branch, links, sha256, output_folder):
|
def check_model_files(self, model, branch, links, sha256, output_folder):
|
||||||
# Validate the checksums
|
# Validate the checksums
|
||||||
validated = True
|
validated = True
|
||||||
for i in range(len(sha256)):
|
for i in range(len(sha256)):
|
||||||
|
@ -256,22 +267,23 @@ if __name__ == '__main__':
|
||||||
if model is None:
|
if model is None:
|
||||||
model, branch = select_model_from_default_options()
|
model, branch = select_model_from_default_options()
|
||||||
|
|
||||||
|
downloader = ModelDownloader()
|
||||||
# Cleaning up the model/branch names
|
# Cleaning up the model/branch names
|
||||||
try:
|
try:
|
||||||
model, branch = sanitize_model_and_branch_names(model, branch)
|
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
|
||||||
except ValueError as err_branch:
|
except ValueError as err_branch:
|
||||||
print(f"Error: {err_branch}")
|
print(f"Error: {err_branch}")
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
# Getting the download links from Hugging Face
|
# Getting the download links from Hugging Face
|
||||||
links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only)
|
links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only)
|
||||||
|
|
||||||
# Getting the output folder
|
# Getting the output folder
|
||||||
output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output)
|
output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=args.output)
|
||||||
|
|
||||||
if args.check:
|
if args.check:
|
||||||
# Check previously downloaded files
|
# Check previously downloaded files
|
||||||
check_model_files(model, branch, links, sha256, output_folder)
|
downloader.check_model_files(model, branch, links, sha256, output_folder)
|
||||||
else:
|
else:
|
||||||
# Download files
|
# Download files
|
||||||
download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)
|
downloader.download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)
|
||||||
|
|
|
@ -184,7 +184,8 @@ def count_tokens(text):
|
||||||
|
|
||||||
def download_model_wrapper(repo_id):
|
def download_model_wrapper(repo_id):
|
||||||
try:
|
try:
|
||||||
downloader = importlib.import_module("download-model")
|
downloader_module = importlib.import_module("download-model")
|
||||||
|
downloader = downloader_module.ModelDownloader()
|
||||||
repo_id_parts = repo_id.split(":")
|
repo_id_parts = repo_id.split(":")
|
||||||
model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id
|
model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id
|
||||||
branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
|
branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue