Merge pull request #219 from deepdiffuser/4bit-multigpu
add multi-gpu support for 4bit gptq LLaMA
This commit is contained in:
commit
113b791aa5
1 changed files with 13 additions and 1 deletions
|
@ -110,7 +110,19 @@ def load_model(model_name):
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
model = load_quant(path_to_model, Path(f"models/{pt_model}"), 4)
|
model = load_quant(path_to_model, Path(f"models/{pt_model}"), 4)
|
||||||
model = model.to(torch.device('cuda:0'))
|
|
||||||
|
if shared.args.gpu_memory:
|
||||||
|
import accelerate
|
||||||
|
|
||||||
|
max_memory = {}
|
||||||
|
for i in range(len(shared.args.gpu_memory)):
|
||||||
|
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
||||||
|
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
||||||
|
|
||||||
|
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
|
||||||
|
model = accelerate.dispatch_model(model, device_map=device_map)
|
||||||
|
else:
|
||||||
|
model = model.to(torch.device('cuda:0'))
|
||||||
|
|
||||||
# Custom
|
# Custom
|
||||||
else:
|
else:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue