Add dynamic_temperature_low parameter (#5198)
This commit is contained in:
parent
b8a0b3f925
commit
0d07b3a6a1
11 changed files with 30 additions and 88 deletions
|
@ -155,7 +155,8 @@ def transformers_samplers():
|
|||
return {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'dynatemp',
|
||||
'dynamic_temperature',
|
||||
'dynamic_temperature_low',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
|
@ -221,7 +222,8 @@ loaders_samplers = {
|
|||
'ExLlamav2_HF': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'dynatemp',
|
||||
'dynamic_temperature',
|
||||
'dynamic_temperature_low',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
|
@ -274,7 +276,8 @@ loaders_samplers = {
|
|||
'llamacpp_HF': {
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'dynatemp',
|
||||
'dynamic_temperature',
|
||||
'dynamic_temperature_low',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
|
|
|
@ -12,7 +12,8 @@ def default_preset():
|
|||
return {
|
||||
'temperature': 1,
|
||||
'temperature_last': False,
|
||||
'dynatemp': 0,
|
||||
'dynamic_temperature': False,
|
||||
'dynamic_temperature_low': 0.1,
|
||||
'top_p': 1,
|
||||
'min_p': 0,
|
||||
'top_k': 0,
|
||||
|
@ -53,7 +54,6 @@ def load_preset(name):
|
|||
for k in preset:
|
||||
generate_params[k] = preset[k]
|
||||
|
||||
generate_params['temperature'] = min(1.99, generate_params['temperature'])
|
||||
return generate_params
|
||||
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ global_scores = None
|
|||
|
||||
|
||||
class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
||||
def __init__(self, temperature: float, dynatemp: float):
|
||||
def __init__(self, temperature: float, dynamic_temperature: bool, dynamic_temperature_low: float):
|
||||
if not isinstance(temperature, float) or not (temperature > 0):
|
||||
except_msg = (
|
||||
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
|
||||
|
@ -28,19 +28,20 @@ class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
|||
raise ValueError(except_msg)
|
||||
|
||||
self.temperature = temperature
|
||||
self.dynatemp = dynatemp
|
||||
self.dynamic_temperature = dynamic_temperature
|
||||
self.dynamic_temperature_low = dynamic_temperature_low
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
|
||||
# Regular temperature
|
||||
if self.dynatemp == 0:
|
||||
if not self.dynamic_temperature:
|
||||
scores = scores / self.temperature
|
||||
return scores
|
||||
|
||||
# Dynamic temperature
|
||||
else:
|
||||
min_temp = max(0.0, self.temperature - self.dynatemp)
|
||||
max_temp = self.temperature + self.dynatemp
|
||||
min_temp = self.dynamic_temperature_low
|
||||
max_temp = self.temperature
|
||||
exponent_val = 1.0
|
||||
|
||||
# Convert logits to probabilities
|
||||
|
@ -283,7 +284,7 @@ def get_logits_warper_patch(self, generation_config):
|
|||
generation_config.temperature = float(generation_config.temperature)
|
||||
|
||||
temperature = generation_config.temperature
|
||||
if generation_config.dynatemp > 0:
|
||||
if generation_config.dynamic_temperature:
|
||||
# Make sure TemperatureLogitsWarper will be created by temporarily
|
||||
# setting temperature to a value != 1.
|
||||
generation_config.temperature = 1.1
|
||||
|
@ -291,7 +292,7 @@ def get_logits_warper_patch(self, generation_config):
|
|||
warpers = self._get_logits_warper_old(generation_config)
|
||||
for i in range(len(warpers)):
|
||||
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
|
||||
warpers[i] = TemperatureLogitsWarperWithDynatemp(temperature, generation_config.dynatemp)
|
||||
warpers[i] = TemperatureLogitsWarperWithDynatemp(temperature, generation_config.dynamic_temperature, generation_config.dynamic_temperature_low)
|
||||
|
||||
warpers_to_add = LogitsProcessorList()
|
||||
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
|
||||
|
@ -359,7 +360,8 @@ def get_logits_processor_patch(self, **kwargs):
|
|||
def generation_config_init_patch(self, **kwargs):
|
||||
self.__init___old(**kwargs)
|
||||
self.min_p = kwargs.pop("min_p", 0.0)
|
||||
self.dynatemp = kwargs.pop("dynatemp", 0.0)
|
||||
self.dynamic_temperature = kwargs.pop("dynamic_temperature", False)
|
||||
self.dynamic_temperature_low = kwargs.pop("dynamic_temperature_low", 0.1)
|
||||
self.tfs = kwargs.pop("tfs", 1.0)
|
||||
self.top_a = kwargs.pop("top_a", 0.0)
|
||||
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
|
||||
|
|
|
@ -285,7 +285,7 @@ def get_reply_from_output_ids(output_ids, state, starting_from=0):
|
|||
|
||||
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
|
||||
generate_params = {}
|
||||
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynatemp', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
|
||||
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynamic_temperature_low', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
|
||||
generate_params[k] = state[k]
|
||||
|
||||
if state['negative_prompt'] != '':
|
||||
|
|
|
@ -115,7 +115,8 @@ def list_interface_input_elements():
|
|||
'seed',
|
||||
'temperature',
|
||||
'temperature_last',
|
||||
'dynatemp',
|
||||
'dynamic_temperature',
|
||||
'dynamic_temperature_low',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
|
|
|
@ -49,7 +49,8 @@ def create_ui(default_preset):
|
|||
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
|
||||
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
|
||||
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
|
||||
shared.gradio['dynatemp'] = gr.Slider(0, 5, value=generate_params['dynatemp'], step=0.01, label='dynatemp')
|
||||
shared.gradio['dynamic_temperature_low'] = gr.Slider(0.01, 5, value=generate_params['dynamic_temperature_low'], step=0.01, label='dynamic_temperature_low', info='Only used when dynamic_temperature is checked.')
|
||||
shared.gradio['dynamic_temperature'] = gr.Checkbox(value=generate_params['dynamic_temperature'], label='dynamic_temperature')
|
||||
shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Makes temperature the last sampler instead of the first.')
|
||||
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
|
||||
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue