Supercharging superbooga (#3272)
This commit is contained in:
parent
ad00b8eb26
commit
0845724a89
21 changed files with 12294 additions and 2 deletions
72
extensions/superboogav2/benchmark.py
Normal file
72
extensions/superboogav2/benchmark.py
Normal file
|
|
@ -0,0 +1,72 @@
|
|||
"""
|
||||
This module implements a benchmark function to evaluate the performance of the embedding pipeline. It expects a configuration JSON file. It must have questions and expected retrieved text.
|
||||
For each question, it's essential to have variants of that question. Language is fluid and each person might have their own spin on how they may ask it.
|
||||
|
||||
At the end, it will save the results inside a benchmark_{sysdate}.txt file in the main directory.
|
||||
|
||||
The benchmark function will return the score as an integer.
|
||||
"""
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from .data_processor import process_and_add_to_collector, preprocess_text
|
||||
from .parameters import get_chunk_count, get_max_token_count
|
||||
from .utils import create_metadata_source
|
||||
|
||||
def benchmark(config_path, collector):
|
||||
# Get the current system date
|
||||
sysdate = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"benchmark_{sysdate}.txt"
|
||||
|
||||
# Open the log file in append mode
|
||||
with open(filename, 'a') as log:
|
||||
with open(config_path, 'r') as f:
|
||||
data = json.load(f)
|
||||
|
||||
total_points = 0
|
||||
max_points = 0
|
||||
|
||||
for item in data:
|
||||
filepath = item["text"]
|
||||
corpus = ""
|
||||
|
||||
# Check if the file exists
|
||||
if os.path.isfile(Path(filepath)):
|
||||
# Open the file and read its content
|
||||
with open(Path(filepath), 'r') as file:
|
||||
corpus = file.read()
|
||||
process_and_add_to_collector(corpus, collector, True, create_metadata_source('benchmark'))
|
||||
else:
|
||||
raise f'Cannot find specified file {filepath}.'
|
||||
|
||||
for question_group in item["questions"]:
|
||||
question_variants = question_group["question_variants"]
|
||||
criteria = question_group["criteria"]
|
||||
|
||||
for q in question_variants:
|
||||
max_points += len(criteria)
|
||||
processed_text = preprocess_text(q)
|
||||
|
||||
# Get the most similar chunks
|
||||
results = collector.get_sorted_by_dist(processed_text, n_results=get_chunk_count(), max_token_count=get_max_token_count())
|
||||
|
||||
points = 0
|
||||
|
||||
for c in criteria:
|
||||
for p in results:
|
||||
if c in p:
|
||||
points += 1
|
||||
total_points += 1
|
||||
break
|
||||
|
||||
info = f"The question '{q}' scored {points}/{len(criteria)} points."
|
||||
print(info, file=log)
|
||||
|
||||
print('\n---\n', file=log)
|
||||
|
||||
print(f'##Total points:\n\n{total_points}/{max_points}', file=log)
|
||||
|
||||
return total_points, max_points
|
||||
Loading…
Add table
Add a link
Reference in a new issue